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Abstract: The diffuse attenuation coefficient of downwelling irradiance (Kd) is an essential parameter
for inland waters research by remotely sensing the water transparency. Lately, Kd semi-analytical
algorithms substituted the empirical algorithms widely employed. The purpose of this research was
to reparametrize a semi-analytical algorithm to estimate Kd and then apply it to a Sentinel-2 MSI
time-series (2017–2019) for the Três Marias reservoir, Brazil. The results for the Kd semi-analytical
reparametrization achieved good accuracies, reaching mean absolute percentage errors (MAPE) for
bands B2, B3 and B4 (492, 560 and 665 nm), lower than 21% when derived from in-situ remote
sensing reflectance (Rrs), while for MSI Data, a derived MAPE of 12% and 38% for B2 and B3,
respectively. After the application of the algorithm to Sentinel-2 images time-series, seasonal patterns
were observed in the results, showing high Kd values at 492 nm during the rainy periods, mainly in
the tributary mouths, possibly due to an increase in the surface runoff and inflows and outflow rates
in the reservoir watershed.

Keywords: inland waters; remote sensing of water transparency; downwelling irradiance; diffuse
attenuation coefficient; semi-analytical algorithm; empirical algorithm

1. Introduction

Três Marias (TM) reservoir is an essential tropical inland water body situated in the southeast of
Brazil (Minas Gerais State), in the São Francisco River upper valley [1,2]. The main use of TM reservoir
is the hydroelectric power generation [3], with an installed capacity of 45 MW. Moreover, TM reservoir
provides other ecosystem services such as water supply, irrigation, fishing, and fish-farming [4].
Shifts in rainfall precipitation and surface runoff seasonal variability over the watershed induce
significant changes in the water quantity and quality, affecting the management and multiple uses
of water and land over the reservoir basin [5–7]. With clear waters, TM reservoir might vary from
oligo to mesotrophic state waters [8–10] depending on the season of the year. Therefore, it is essential
to understand the spatiotemporal dynamics of water quality in TM to provide proper management
of those waters. Changes in the water optical active constituents (OACs) such as phytoplankton,
suspended sediments, and Colored Dissolved Organic Matter (CDOM) modify water transparency,
affecting the light attenuation on the water column [11]. As this attenuation is intrinsically connected to
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OACs, underwater light measurements are critical for understanding the physical and biogeochemical
processes, such as primary productivity, euphotic zone depth, visibility, and heat transfer [12–15].

A frequently used method to understand light attenuation in the water column is the diffuse
attenuation coefficient of downwelling irradiance (Kd) (see Table 1 for symbols and acronyms used
in this paper). Kd is an apparent optical property (AOP) that depends on both the composition
of the medium and on the light field structure. It is defined by the exponential decrease of the
downwelling irradiance in the water column [16]. However, Kirk [17] has shown that Kd values are
largely determined by inherent optical properties (IOP) of the aquatic medium, being slightly altered
by variations in the light field, such as the changes in the solar elevation. The characterization and
accurate estimation of Kd is, therefore, critical to the understanding of light spectral availability in the
euphotic zone, phytoplankton photosynthesis, primary productivity [18,19], as well as heat transfer in
the upper layer of the water column [20].

Table 1. Symbols and Acronyms.

Parameter Definition Unit

OAC Optically active constituent -

IOP Inherent optical property -

AOP Apparent optical property -

Lt(λ) Above water upwelling irradiance W m−2 sr−1

Lsky(λ) Sky diffuse radiance W m−2 sr−1

Es(λ) Above water surface downwelling irradiance W m−2

Ed(z; λ) Underwater downwelling irradiance at depth z W m−2

Kd(z; λ) Diffuse attenuation coefficient of downwelling irradiance m−1

Rrs(λ) Remote sensing reflectance sr−1

rrs(λ) Subsurface remote sensing reflectance sr−1

Zsd Secchi disk depth m

A(λ) Spectral absorbance -

a(λ) Total absorption coefficient, aw + aφ + ad + aCDOM m−1

ap(λ) Total absorption of the particulate material m−1

ad(λ) Total absorption of the detritus m−1

aCDOM(λ) Absorption coefficient of colored dissolved organic matter m−1

aφ(λ) Absorption coefficient of Phytoplankton pigments m−1

aw(λ) Absorption coefficient of pure water m−1

bb(λ) Total backscattering coefficient, bbp + bbw m−1

bbp(λ) Backscattering coefficient of particles m−1

bbw(λ) Backscattering coefficient of pure water m−1

Chla Chlorophyll a concentration mg m−3

CDOM Colored dissolved organic matter -

TSS Total suspended solids g m−3

λ0 Reference wavelength nm

u(λ) Ratio of backscattering coefficient to the sum of absorption and backscattering coefficient -

η Slope power of bbp -

The connection between AOPs and IOPs is the key of understanding how to link Kd variations with
remote sensing (RS) measurements. This connection is frequently made by empirical or semi-analytical
algorithms. For an extended period, the standard method to estimate Kd from remotely sensed data
has been by empirical approaches using the relationship between Kd and remote sensing reflectance
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(Rrs) [21,22]. However, uncertainties related to the dataset used for reparametrization and validation
of empirical approaches are inherent to this method, making it insufficient to provide an accurate
estimation of the Kd for ranges not used in the reparametrization process [23]. To overcome this
issue, semi-analytical approaches based on radiative transfer equations have been proposed [13,24–26],
improving the accuracy of Kd estimations. The semi-analytical approaches require IOPs as input
(absorption and backscattering coefficients), which is done by AOPs inversion. By combining the
semi-analytical Kd algorithms with existing semi-analytical algorithms for the derivation of the water
total absorptions and total backscattering coefficients (water plus constituents), Kd can easily be
implemented using satellite data [25,27]. Despite the successful use of IOPs inversion algorithms
in oceanic and coastal waters, their use in inland waters still requires a reparameterization of the
approaches used to provide a high-performance algorithm.

Therefore, the main purpose of this research was to evaluate the performance of Lee et al. [26]
semi-analytical algorithm to derive Kd from Rrs using in-situ and Sentinel-2 MSI data. As the algorithm
requires IOPs as input, the Quasi-Analytical Algorithm (QAA) was reparametrized to TM reservoir
using IOPs in-situ measurements. The validated Kd algorithm was, therefore, applied to a time-series
of Sentinel-2 MSI images to understand the spatial and temporal variability of light attenuation in
TM reservoir and its relationship with precipitation events. Before that, a brief characterization of TM
reservoir waters was done to support the Kd results discussions.

2. Materials and Methods

The development of this study is organized in four steps (Figure 1): (1) Database organization and
study area characterization; (2) Semi-analytical algorithms for Kd estimation; (3) Statistical validation
of the results; and (4) Image time-series application.
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2.1. Study Area

The study area consists of the Três Marias (TM) hydroelectric reservoir located in the upper valley
of the São Francisco River, in the central region of Minas Gerais state (Figure 2) [1,2]. Constructed in
1957 and operating since 1962, TM reservoir is approximately 100 km long in its main axis along the São
Francisco River and has a volume of at least 20 billion m3 of water [3]. Moreover, the TM reservoir has
clear water characteristics, except at the entrance of its tributaries and the banks due to its shallow depth
favoring sediment resuspension and bottom effect transparency measurements [28,29]. TM reservoir
watershed is characterized by a humid tropical climate with average annual rainfall precipitation of
1400 mm of [30] concentrated between October and March (85%) [31]. Most of its watershed is inside
the Cerrado biome (Brazilian Savannah), with some fragments of the Mata Atlântica biome (Atlantic
Forest) [32]. The main rivers feeding TM reservoir are São Francisco, Pará, and Paraopeba Rivers
(Figure 2a) [33]. Furthermore, TM watershed main land uses and land cover consist of cattle grazing,
patches of the Atlantic forest, urban areas, and a relevant mining industry activity [32].
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Most of the mining sites inside TM watershed are located within Paraopeba and Pará Rivers
sub-basins. Most of them are located along the Paraopeba River, with particular attention to the
region between Brumadinho city and Belo Horizonte Metropolitan Region, and Pará River sub-basin
(Figure 2a). This area suffered a huge disaster related to the breaking of a mining tailings dam in
Brumadinho city on the 25 January 2019, which caused at least 259 deaths [34]. This event highlighted
the importance of the Paraopeba river since it drains all the runoff waters from Brumadinho city and
part of the Belo Horizonte Metropolitan Region [32,35].

The water transparency and the trophic state of the TM reservoir show seasonal changes with lower
concentrations of chla and TSS during the dry season [8,10,36]. Generally, the TM reservoir waters are
more transparent in the middle of its main channel, having the lowest transparencies at the entrances
of its main tributaries. In general, São Francisco River waters that flow into the TM have higher TSS
concentrations and lower transparency than those of Paraopeba River [37]. This difference may be
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explained by the existence of a small-scale reservoir (Retiro Baixo) just upstream of the Paraopeba River
entrance that holds part of the sediments which, otherwise would be transported into TM reservoir.

2.2. Field Data Acquisition

Data collection was carried out at 42 sampling stations (see Figure 2b): 22 from 17–22 June 2013;
and 20 from 30 June to 2 July 2019.

Radiometric data were acquired using inter-calibrated TriOS-RAMSES radiometers (Rastede,
Germany) to measure Lt(θ;φ; λ), Lsky(θ′;φ; λ), Es(λ) and Ed(z; λ), within 350–900 nm wavelength
range. The framework for the four radiometers (Figure 3) was: (i) Lw(λ) within a nadir angle (θ) of 45◦

and Sun azimuth angle (φ) of 135◦; (ii) Lsky(λ) within a zenithal angle (θ′) of 45◦ and azimuthal angle
of 135◦; (iii) Es(λ) at 180◦ in relation to the water surface; and, (iv) Ed(z; λ) positioned in a cage and
submerged with the aid of a crane. The above-water sensors were positioned 2 m away from the water
surface to avoid shadow and vessel reflections. This acquisition geometry is based on Mobley [38] to
avoid glint effects.
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The total absorption coefficient a(λ) was measured with the Wetlabs Spectral Absorption and
Attenuation meter (ACS, Bellevue, United States) [39] during the 2013 campaign, while in 2019, it was
determined in the laboratory as described in Section 2.3.

Water sampling collection protocols followed the American Public Health Association (APHA) [40].
Water samples were collected at approximately 30 cm of depth using sampling bottles coated with
opaque material and then stored inside a cooler with ice until its filtration. After the samples collection,
the filtration was conducted to prepare the water samples and the filters for laboratory analysis and
determination of chla, TSS, aCDOM(λ), ap(λ), and its fractions aφ(λ) and ad(λ). Filter Whatman GF/F
was used for chla, ap(λ), and its fractions aφ(λ) and ad(λ), and Whatman GF/C for TSS, while water
samples filtered using Nylon filters with pore diameter of 0.22 µm were used for CDOM. The chla
and TSS samples were frozen inside envelopes at temperatures below 0◦C, while ap(λ) and fractions
samples were frozen inside opaque vials in a liquid nitrogen bottle at temperatures below −196 ◦C.
The CDOM water samples were chilled without freezing it.



Remote Sens. 2020, 12, 2828 6 of 23

2.3. Spectral and Water Quality Field Data

2.3.1. Optically Active Constituents

The chla concentration was determined using the Nush method [41] based on the 665 and 750 nm
absorbances read in a spectrophotometer (brand Agilent/Varian, model Cary-50 Conc, Santa Clara,
United States). This method extracts the phytoplankton pigments retained in the Whatman GF/F filter
by warm ethanol followed by a thermal shock. The extracted pigments were put to rest for 6 to 24 h
inside a fridge protected from light before the measurements. Finally, sample extractions were read in
the spectrophotometer using quartz cuvettes with 50 mm of the optical path.

TSS concentrations were computed using pre-calcined and pre-weighed Whatman GF/C filters.
Before laboratory analysis, the filters were thawed in the laboratory and dried using a laboratory
drying-oven. After that, dried filter samples were weight-measured using a precision scale [42] in a
room with controlled air conditions. Finally, the concentrations were calculated using the relation
between the filter retained solid weight and the volume of filtered water samples [42].

2.3.2. Apparent Optical Properties

The AOP parameters derived from the radiometric field measurements used in this study were
the Rrs(λ) and Kd(λ). The Remote Sensing Reflectance was calculated using Equation (1).

Rrs(θ;φ; λ) =
Lt(θ;φ; λ) − ρLsky( θ ′;φ; λ)

Es(λ)
, (1)

where ρ(θ;φ) is the reflectance factor at the air-water interface. The values for each field station were
obtained from Mobley [38] Look-Up-Table, based on in-situ wind speed and geometry acquisition.
For each sample station, around 150 measurements of Lt(θ;φ; λ), Lsky(θ′;φ; λ) and Es(λ) were obtained.
At each field station, the representative spectrum was determined by the closest to the median spectrum,
as described in Maciel et al. [43].

The Diffuse Attenuation Coefficient (Kd) was computed from the profiles of downwelling planar
irradiance (Ed) measured at each station. The Ed(λ) measurements were acquired by submerging
the equipment up to the euphotic depth (1% of the subsurface Ed) at the wavelength of maximum
penetration. Therefore, Equation (2) summarizes the propagation of Ed(λ).

Ed(zm; λ) = Ed(z1; λ) e−Kd(λ)z, (2)

where Ed(zm; λ) represents the downwelling irradiance measured at the depth (zm), and Ed(z1; λ) is
the subsurface downwelling irradiance (the first measurement used to calculate Kd(λ)). Due to the
variability in Es(λ) values related to changes in cloud cover and solar angle, Ed(zm; λ) was normalized
(E′d(zm; λ)) by Es(λ) [44]. This normalization followed the protocols of Mueller [23], calculating
E′d(zm; λ) by multiplying Ed(zm; λ) by a Normalization Factor (NF(zm, λ)) (Equation (3)).

E′d(zm; λ) = Ed(zm; λ) NF(zm, λ) =
Ed(zm; λ) Es(t(z1), λ)

Es(t(zm), λ)
, (3)

where NF(zm, λ) is the ratio between the first measurement of Es(λ) (at the same instant of the
Ed(z1; λ)) by Es(λ) measurement concomitant with Ed(zm; λ). Therefore, Kd(λ) can be calculated
through Equation (4) using E′d(zm; λ). Kd(λ) is given by the straight-line slope that passes through the
origin (i.e., the slope of the relationship of Equation (4)). Only points resulting in R2 higher than 0.98
were used for Kd(λ) computation, as observed by Mishra et al. [44].

Kd−measured(z, λ) = −
1

zm − z1
ln

[
E′d(zm, λ)
E′d(z1, λ)

]
, (4)
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From hereafter, Kd−measured will represent the field measured Kd(λ).

2.3.3. Inherent Optical Properties

CDOM water samples were read using a UV/VIS spectrophotometer (brand Shimadzu, model
UV2600, Kyoto, Japan). Spectrophotometer readings were preprocessed to subtract the mean value
of the measurements of spectral absorbance (A(λ)) and offset [45,46], and then transformed into
aCDOM(λ) [47] using a relationship between A(λ) and the cuvette optical path length (l) (Equation (5)).

aCDOM(λ) = 2.3
A(λ)

l
, (5)

The measurements of a(λ) using ACS equipment, during the 2013 campaign, were acquired
for the water column profile at each sampling station [29]. The data were smoothed to eliminate
the measurement noise. Since the water column was not stratified in most of the sampling stations,
the median of the a(λ) profile was used to represent a(λ) for the whole water column.

Finally, to assess ap(λ), and its fractions (ad(λ) and aφ(λ)) for the 2019 campaign, Whatman
GF/F filters with retained material were analyzed using the UV/VIS spectrophotometer (Shimadzu
UV2600) with dual-beam and an integrating sphere following the methodology proposed by Tassan
& Ferrari [48,49]. Measurements of optical density (OD) were determined and corrected for the
particulate material to estimate ap(λ) in the first reading [49,50]. After that, the pigments in the filter
were leached with sodium chloride and then read again to determine the detritus corrected OD and
estimate ad(λ) [49,50]. This approach measures the spectral reflectance and transmittance to estimate
the ap(λ) and ad(λ), and then aφ(λ) by subtracting ad(λ) from the ap(λ) [42,48,49].

2.4. Sentinel-2 MSI Data

MultSpectral Imager (MSI) images from Sentinel-2 A and B were used in the useful spectral range
for assessing water transparency (Table 2) including the visible (B2 to B5) and near-infrared (B6 and B8)
bands, and the shortwave infrared region (B11) needed for glint effect correction [51,52]. These images
were used to assess temporal changes in Kd, resulting from both natural processes and impacts of the
Brumadinho disaster on TM reservoir.

Table 2. Sentinel-2MSI spectral bands used in this study.

Band (Spatial Resolution) Central Wavelength (nm) Bandwidth (nm) SNR 1

B2 (10 m) 492 (Blue) 98 154
B3 (10 m) 560 (Green) 45 168
B4 (10 m) 665 (Red) 38 142
B5 (20 m) 704 (Red Edge) 19 117
B6 (20 m) 741 (Red Edge) 18 89
B8 (10 m) 833 (IVP) 145 174

B11 (20 m) 1614 (SWIR) 91 100
1 SNR: Signal to noise ratio calculated in laboratory data for reference radiance of each band [53].

2.5. Kd(λ) Semi-Analytical Algorithm

In this study, we used the relationship between the diffuse attenuation coefficient (Kd) and
IOPs [54,55] to reparametrize and apply a semi-analytical algorithm of Kd(λ) (Kd−SA(λ)—Equation (6))
to our study site, using a(λ) and bb(λ) data as input [26]. From hereafter, the semi-analytical Kd(λ) will
be named as Kd−SA.

Kd−SA(λ) = (1 + m0 θs)a(λ) + (1− γ ηw(λ)) m1
(
1−m2

(
e−m3 a(λ)

))
bb(λ), (6)
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where, m0, m1, m2, and m3 are constants independent from wavelength and water type, θs is the
zenithal sun angle, γ a parameter that represents the effect caused by the variation in the scattering
constituents in the water, and ηw(λ) the parameter that quantifies the contribution of bbw(λ) over the
total bb(λ) (Equation (7)).

ηw(λ) = bbw(λ)/bb(λ), (7)

Kd−SA(λ) was used with Lee et al. [26] original values for m0, m1, m2, m3 and γ (0.005, 4.259, 0.52, 10.8 m
and 0.265 respectively), while θs was calculated using the geographic coordinates, day of the year, and
hour of data acquisition.

2.5.1. Deriving Inherent Optical Properties from Remote Sensing Reflectance

To derive a(λ) and bb(λ) as input for equation 6, the empirical steps of the original QAA in its
version 6 (QAAv6) [24,56] were reparametrized using λ0, the reference wavelength, at 560 nm (although
the use of λ0 = 670 nm in the original QAAv6 (Table 3—steps 2 and 4).

Table 3. Summary of QAATM Description and original QAAv6 steps.

# 1 QAATM
2 QAAv6 3 [56]

1

The same as the QAAv6, where the rrs(λ) is
derived analytically from Rrs(λ); u(λ) can be
explained from the relation between a(λ) and
bb(λ), and derived from rrs(λ), g0 and g1 values.

rrs(λ) =
Rrs(λ)

(0.52+1.7 Rrs(λ))

rrs(λ) = g0u(λ) + g0[u(λ)]
2

u(λ) = bb(λ)
(a(λ)+bb(λ))

u(λ) = −
g0+

√
[g2

0+4 g1 rrs(λ)]
2 g1

g0 = 0.089 e g1 = 0.1245

2 Reparametrizated for MSI bands, choosing the
best three bands ratio for this case. a

(
λ0

4
)
= aw(λ0) + 0.39

(
Rrs(λ0)

Rrs(443)+Rrs(490)

)1.14

3 From a(λ0) determined in step 2, the bbp(λ0) was
then derived. bbp(λ0) =

u(λ0) a(λ0)
1−u(λ0)

− bbw(λ0)

4 Reparametrizated using the linearization of step
5 to derive η values η = 2

(
1− 1.2 exp

(
−0.9 rrs(443)

rrs(555)

))
5 The same as the QAAv6. bb(λ) = bbp(λ0) (λ0/λ)η + bbw(λ)

6 The same as the QAAv6. a(λ) = (1− u(λ))
(
bbw(λ) + bbp(λ)

)
/u(λ)

1 QAA steps used in this study; 2 Lee QAAv6 description for TM reparametrization; 3 Lee original non-reparametrized
QAAv6 [56]; 4 QAAv6 original λ0 = 670 nm.

We named this reparametrized QAA as QAATM. For this reparametrization, only a(λ) derived
from ACS [39] measurements carried out during the 2013 campaign (n = 22) were used as no ACS
measurements were available for the 2019 campaign.

For empirical step 2, an exponential adjustment was carried out between a(λ0 = 560), derived
from ACS, and a three-band ratio to derive the parameters M and N (Equation (8)). The wavelengths
used in adjusting correspond to the central wavelength of MSI B3, B4, and B5 bands [57]. The Rrs used
in the bands ratio were derived from in situ measurements at each of the 22 sampling stations.

a(560) = aw(560) + M ∗
(

Rrs(560)
Rrs(665) + Rrs(704)

)N

, (8)

To reparametrize the second empirical step (step 4 of QAAv6) [34], first bbp(λ) was obtained from
a(λ), derived from ACS field measured at sampling station of the 2013 campaign (Equation (9)), and
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then, knowing bbp(λ), a linear fitting was applied to step 5 of QAAv6 (Equation (10)) to estimate the
power value η for each sampling station [57].

bbp(λ) =
u(λ) a(λ)
1− u(λ)

− bbw(λ), (9)

ln
[
bbp(λ)

]
= η ln

(
λ0

λ

)
+ ln

[
bbp(λ0)

]
, (10)

where u(λ) is the ratio of bb to (a + bb) derived from subsurface remote sensing reflectance (rrs(λ))
using QAA step 1 equation [24,56] (Table 3), and bbw is the backscattering coefficient of pure water [58].

To obtain η from rrs, similarly to step 4 of QAAv6, we adjusted Equation (11), based on the
stations η derived from Equation (10) and a two-band ratio using the central wavelength of MSI B4
and B5 bands.

η = A e
rrs(665)
rrs(704) + B, (11)

Finally, the parametrized QAATM was applied using Rrs(λ) data to compute a(λ) and bb(λ) used
as input for Kd−SA.

2.5.2. Semi-Analytical Algorithm Validation

The reparametrized semi-analytical algorithm Kd−SA(λ) was applied and validated using two
datasets as input: (i) first with the in situ Rrs(λ) data; and then, (ii) with the Rrs(λ) derived from MSI
image bands.

Both Kd−SA(λ) derived from in situ Rrs(λ) and Kd−SA(λ) derived from MSI Sentinel-2 A image,
acquired in 1 July 2019 coincident with in situ samplings, were validated with 20 sampling stations of
2019 campaign. The validations were performed from blue to red MSI bands (B1 to B4) for each dataset.

Since the MSI revisit time is 5 days, we used an image covering TM in the middle of the 2019
campaign (1 July). For this reason, the in situ measurements may differ up to 1 day from the satellite
image. This difference should not be of great concern because there was no rainfall precipitation during
the survey campaign, which could change the OACs.

For each algorithm and each dataset, the estimated Kd−SA(λ) was compared with Kd−measured(λ)

using a linear regression approach to assess algorithm accuracy (Section 2.6). The reparametrized
QAATM algorithm was applied to the MSI image time series, as shown in Section 2.7.

2.6. Data Analysis and Accuracy Assessment

For the validation of Kd−SA algorithm, the Kd−measured was used as a reference and the following
statistical metrics were calculate for performance evaluation: correlation coefficient (R2—Equation (12));
the mean absolute percentage error (MAPE—Equation (13)); and, the Root-Mean Square Error
(RMSE—Equation (14)).

R2 = 1−

∑n
i=1(yi − ŷi)

2∑n
i=1

(
yi − yi

)2 , (12)

MAPE =
100
n

∑n

i=1

∣∣∣∣∣ yi − ŷi

yi

∣∣∣∣∣, (13)

RMSE =

√∑n
i=1(yi − ŷi)

2

n
, (14)

where, yi is the reference field value, ŷi the predicted value, yi the average of the field reference value,
and n the size of the dataset. All the linear regressions and the accuracy assessment for the validations
were done based on the MSI bands B1 to B5 wavelengths.
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2.7. Time Series Kd Algorithm Application

The most accurate algorithm was applied to a 2017–2019 time series of Sentinel-2 A and B imagery
for mapping time changes in TM spectral Kd−SA(λ). Moreover, images with less than 10% of cloud
cover over the scene were used in the query searches to reduce the data volume.

First, the image collection was downloaded and preprocessed (Section 2.7.1). After the preprocessing,
the Kd−SA(λ) the algorithm was applied to the image dataset and then monthly-average filtered.

Finally, the results for the time series were extracted for three sampling points distributed along
reservoir mean inflow and outflow rates for each month of the period. Eventually, months without
images following the pre-requirements were not used, causing gaps in the time series.

2.7.1. Sentinel-2 MSI Time Series Preprocessing

First, the image dataset was loaded from the internet and processed using an internal algorithm
from the Instrumentation Laboratory of Aquatic Systems (LabISA) that downloads the images at the
top of the main axis of TM reservoir (downstream, middle, and upstream) using Quantum GIS software.
The extracted results were confronted with the accumulated rainfall precipitation for the watershed
and the atmosphere level (L1C) from Google Earth Engine API, then applies AtmosPy atmospheric
correction algorithm [59] achieving surface level (L2C). AtmosPy is a processing interface to run
the Second Simulation of the Satellite Signal in the Solar Spectrum (6S–6SV) atmospheric correction
algorithm [60,61]. In the Atmospy interface, the 6S algorithm receives atmospheric products from
Multi-Angle Implementation of Atmospheric Correction (MAIAC) like water vapor, ozone, and aerosol
optical depth. After atmospheric correction, the LabISA routine applies the fmask algorithm [62] to
produce a water mask without clouds and cloud shades.

After atmospheric correction and masking, the image dataset was standardized to 10 m by resampling
bands B5, B6, and B11 using the nearest neighbor method to match VIS bands’ spatial resolution. Finally,
the glint effect was removed, subtracting the band B11 values from all the remaining five bands [51].

3. Results

3.1. In Situ Limnology Data

The subsurface chla and TSS concentrations, and the Zsd measurements have different ranges for
each campaign (Table 4). For the 2013 field campaign, chla values varied from 1.17 to up to 13.22 mg m−3

with a mean value of 5.27 mg m−1 while for 2019, the values varied between 1.33 and 7.95 mg m−3

with the mean value of 3.66 mg m−3. On the other hand, TSS values were more homogeneous between
these campaigns (mean of 3.66 and 2.77 g m−3 for 2013 and 2019, respectively). Similar to chla and TSS,
the Secchi disk depth (Zsd) also showed higher variability for the 2013 campaign as opposed to that of
2019 one. These values were distinct, even for nearby stations between the campaigns.

Table 4. Summary for chla, TSS and Zsd values statistics.

Parameter
2013

Range 1 Mean 2 Median 3 CV 4 SD 5

chla 1.17–13.22 5.27 4.46 64.37 3.39
TSS 1.33–7.95 3.66 3.32 44.56 1.63
Zsd 0.50–4.62 2.32 2.12 41.35 0.96

Parameter
2019

Range Mean Median CV SD

chla 0.42–5.70 2.53 2.41 53.74 1.36
TSS 0.70–6.67 2.77 2.30 55.93 1.55
Zsd 2.81–4.42 3.62 3.58 12.44 0.42

1 Range of concentration; 2 Concentration mean; 3 Concentration median; 4 Coefficient of variation [%]; 5 Standard
deviation in concentration unit.



Remote Sens. 2020, 12, 2828 11 of 23

The descriptive statistics of chla, TSS, and Zsd variation for each campaign are in Table 4.

3.2. In Situ Radiometric Characterization

3.2.1. Apparent Optical Properties

Field Rrs(λ) values showed higher amplitudes for the 2013 campaign (Figure 4a) than those for
2019 (Figure 4b), highlighting P25 and P26 stations during 2013 (Figure 2) with the highest Rrs(λ) values
near 560 nm (Figure 4a–dotted lines). Both stations presented high TSS values (2.36 and 6.41 g m−3

respectively), and low Zsd values (0.85 and 0.50 m respectively). In general, Rrs(λ) peaks have occurred
in the green region of the spectrum (between 550 to 580 nm) reaching values from 0.005 up to 0.042 sr−1,
and two other little “shoulders” in the red region, one at 620 nm and the other between 676 and 679 nm,
approximately. Moreover, the Rrs(λ) in the NIR region (700 to 750 nm) were the lowest ones, reaching
null (0) values.
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Figure 4. Field Rrs(λ) values for: (a) 2013; and, (b) 2019.

For the Kd−measured calculation, it is necessary to understand the Ed(z; λ) decay as the water column
depth increases. Figure 5 presented one example of Ed profile in the water column, in a logarithmic
scale, for each campaign for blue (443 nm), green (560 nm), and red (665 nm) wavelengths. For both
campaigns, the highest light attenuation occurred at 443 nm, when it reached 1% of the subsurface
Ed(z; λ) at approximately 6 m depth. The red region followed the blue region with penetration of
approximately 7 m of the subsurface Ed(z; λ) at 665 nm. Finally, the highest light penetration occurred
at 560 nm (green) with approximately 13 m of euphotic depth.
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The spectral decay of Ed(z; λ) with depth in the water column (Figure 5) was used to calculate
the Kd−measured(λ) (Figure 6). According to in-situ limnology and Rrs data, higher Kd−measured(λ) values
were observed for the 2013 campaign. The Kd−measured(λ) in the blue region (< 500 nm) reached up to
approximately 1.5 m−1 at 443 nm. Moreover, 2013 data also presented a high range of values compared
to those of the 2019 campaign, which is clearly due to the high variability in field-measured OACs. It is
also important to highlight that stations P25 and P26 (Figure 6—Dotted lines) presented uncertainties
in Kd−measured(λ) for wavelengths lower than 500 nm, which can be attributed to high CDOM and TSS
absorption at those wavelengths [63].
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Figure 6. Field Kd(λ) for: (a) 2013; and, (b) 2019.

Similar to the Ed(z; λ) decay (Figure 5), Figure 6 shows that the water column light penetration
was higher in the green region of the spectrum (550–600 nm) for all stations, which is represented by
Kd−measured(λ) lower values.

3.2.2. Inherent Optical Properties

The measurements of in-situ total absorption coefficient (a(λ)) values (Figure 7) followed the
observed results for Rrs and limnological data. Note that for 2013 the a(λ) were acquired through ACS
measurements whereas for 2019 a(λ) data were obtained through a spectrophotometer (See Section 2.2.).
Besides, when both were compared, the results follow the same pattern. All a(λ) spectra showed chla
absorption features at approximately 676 to 679 nm wavelengths. From Figure 7 it is possible to note
that the lowest a(λ) occurred at 550–580 range, following that observed for Kd. Moreover, one can note
that as the wavelength increases the contribution of pure water absorption (aw(λ)) increases in the
total a(λ), (Figure 7—Red-dotted line), with approximately 80% in the red domain (665 nm) and with
almost 100% at wavelengths higher than 700.

Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 23 

 

 
Figure 6. Field 𝐾 (λ) for: (a) 2013; and, (b) 2019. 

Similar to the 𝐸 (z; λ) decay (Figure 5), Figure 6 shows that the water column light penetration 
was higher in the green region of the spectrum (550–600 nm) for all stations, which is represented by 𝐾 (λ) lower values. 

3.2.2. Inherent Optical Properties 

The measurements of in-situ total absorption coefficient (𝑎(λ)) values (Figure 7) followed the 
observed results for 𝑅  and limnological data. Note that for 2013 the 𝑎(λ) were acquired through 
ACS measurements whereas for 2019 𝑎(λ) data were obtained through a spectrophotometer (See 
Section 2.2.3). Besides, when both were compared, the results follow the same pattern. All 𝑎(λ) 
spectra showed 𝑐ℎ𝑙𝑎 absorption features at approximately 676 to 679 nm wavelengths. From Figure 
7 it is possible to note that the lowest 𝑎(λ) occurred at 550–580 range, following that observed for 𝐾 . Moreover, one can note that as the wavelength increases the contribution of pure water 
absorption (𝑎 (λ)) increases in the total 𝑎(λ), (Figure 7—Red-dotted line), with approximately 80% 
in the red domain (665 nm) and with almost 100% at wavelengths higher than 700. 

 

Figure 7. Field 𝑎(λ) values for: (a) 2013; and, (b) 2019. 

For CDOM measurements, 𝑎 (λ) at 443 nm (𝑎 (443)) (Figure 8) and spectral 𝑎 (λ) 
(Figure 8) achieved higher variation for the 2013 campaign (~0.1 to up to 0.8 m−1) compared to the 
2019 (~0.1–0.3 m−1), mostly due to the stations inside TM main affluent rivers (P13, P23, P25, and P26), 
represented as blue dotted-lines in Figure 8a. Besides, these stations presented different slopes of 
CDOM decay, which can be attributed to different sources of organic matter from those tributaries. 
The 𝑎 (443) statistical parameters (mean, median and standard deviation) for each campaign 
are in Figure 8. 

Figure 7. Field a(λ) values for: (a) 2013; and, (b) 2019.



Remote Sens. 2020, 12, 2828 13 of 23

For CDOM measurements, aCDOM(λ) at 443 nm (aCDOM(443)) (Figure 8) and spectral aCDOM(λ)

(Figure 8) achieved higher variation for the 2013 campaign (~0.1 to up to 0.8 m−1) compared to the
2019 (~0.1–0.3 m−1), mostly due to the stations inside TM main affluent rivers (P13, P23, P25, and P26),
represented as blue dotted-lines in Figure 8a. Besides, these stations presented different slopes of
CDOM decay, which can be attributed to different sources of organic matter from those tributaries.
The aCDOM(443) statistical parameters (mean, median and standard deviation) for each campaign are
in Figure 8.Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 23 
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Higher aCDOM(443)values (Figure 8) were found at the sampling stations with higher Rrs(λ)

(Figure 4) for wavelengths in the blue to green regions of the spectrum, between approximately 400
and 560 nm.

3.3. QAATM Parametrization

The exponential adjustment between a(560) and the three bands Rrs(560)/Rrs(665) + Rrs(704)
(Figure 9a) showed good results, with R2 of 0.93. Besides that, the linear adjustment between the η and
the exponential of the two bands ratio Rrs(665)/Rrs(704) (Figure 9b) produced R2 of 0.41 for the same
22 sampling stations.
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Nevertheless, the results from the estimation of the η by equation 10 used as preprocessing for step
4 reparametrization were satisfactory, with an average R2 of 0.77. Table 5 summarizes the empirical
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steps of QAATM and QAA. The parametrized QAATM as the QAAv6 adapted for MSI bands used to
derive a(λ) and bb(λ) from Rrs(λ) values are summarized in Table 5.

Table 5. Summary of QAATM and comparison with original QAAv6.

# 1 QAATM
2 QAA v6 3 [56]

2 a(560)= aw(560) + 0.43
(

Rrs(560)
Rrs(665)+Rrs(704)

)−1.44
a(665)= aw(665) + 0.39

(
Rrs(665)

Rrs(443)+Rrs(492)

)1.14

3 bbp(560) = u(560) a(560)
1−u(560) − bbw(560) bbp(665) = u(670) a(665)

1−u(665) − bbw(665)

4 η = 0, 5248 exp
(

rrs(665)
rrs(704)

)
η = 2

(
1− 1.2 exp

(
−0.9 rrs(443)

rrs(560)

))
5 bb(λ) = bbp(560) (560/λ)η + bbw(λ) bb(λ) = bbp(λ0) (665/λ)η + bbw(λ)

1 QAA steps with different parametrization for the algorithms; 2 Lee QAAv6 parametrized for TM; 3 Lee original
non-reparametrized QAAv6 [56].

3.4. In Situ Kd−SA(λ) Validation

The QAATM (Figure 10a) showed better overall results for the spectral regions with the lowest
Kd−SA(λ), agreeing most with the reference wavelength at 560 nm (B3). The results had excellent
accuracy, with R2 of 0.83, MAPE of 20.98%, and RMSE of 0.23 m−1. Besides that, the results for the
non-parametrized QAAv6 (Figure 10b) achieved R2 of 0.68, MAPE of 21,20%, and RMSE of 0.18 m−1,
achieving better results around 665 nm (B4), used as the reference wavelength.

Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 23 

Table 5. Summary of QAATM and comparison with original QAAv6. 

# 1 QAATM 2 QAA v63 [56] 

2 
𝑎(560)= 𝑎 (560) + 0.43 𝑅 (560)𝑅 (665) + 𝑅 (704) . 𝑎(665)= 𝑎 (665) + 0.39 𝑅 (665)𝑅 (443) + 𝑅 (492) .

3 𝑏 (560) = 𝑢(560) 𝑎(560)1 − 𝑢(560) − 𝑏 (560) 𝑏 (665) = 𝑢(670) 𝑎(665)1 − 𝑢(665) − 𝑏 (665) 

4 𝜂 = 0,5248 exp 𝑟 (665)𝑟 (704)  𝜂 = 2 1 − 1.2 exp −0.9 𝑟 (443)𝑟 (560)  

5 𝑏 (𝜆) = 𝑏 (560) (560/λ) + 𝑏 (𝜆) 𝑏 (𝜆) = 𝑏 (λ ) (665/λ) + 𝑏 (𝜆) 
1 QAA steps with different parametrization for the algorithms; 2 Lee QAAv6 parametrized for TM; 3

Lee original non-reparametrized QAAv6 [56].

3.4. In Situ 𝐾 (𝜆) Validation 

The QAATM (Figure 10a) showed better overall results for the spectral regions with the lowest 𝐾 (λ), agreeing most with the reference wavelength at 560 nm (B3). The results had excellent 
accuracy, with R2 of 0.83, MAPE of 20.98%, and RMSE of 0.23 m−1. Besides that, the results for the
non-parametrized QAAv6 (Figure 10b) achieved R2 of 0.68, MAPE of 21,20%, and RMSE of 0.18 m−1, 
achieving better results around 665 nm (B4), used as the reference wavelength.

Regarding the slope and offset of the linear regression, QAATM showed a steeper slope and 
slightly similar offset when compared to QAAv6 (Figure 10). The different reference wavelength used 
in each QAA approach has a visible interference in the slope of the regressions and the accuracy of 
the results for each chosen band. QAATM approach had better accuracies for the lower values of𝐾 (λ), agreeing most with the bands at 492, 560 and 665 nm (B2 to B4), while it overestimates 
higher values of 𝐾 (λ) at 443 and 704 nm (B1 and B5). Besides that, QAAv6 had a better agreement
with values at 560 and 665 nm (B3 and B4), overestimating the results of 𝐾 (λ) at 443 and 492 nm 
and overestimating results at 704 nm (B5).

Figure 10. Global results for 𝐾 (λ) derived from field 𝑅 (λ) measurements for: (a) QAATM; and, (b) 
QAAv6.

The results of 𝐾 (λ) were also statistically assessed from B1 to B4 (Figure 11) to compare
QAATM accuracy with the non-parametrized QAAv6 accuracy. For QAATM, the results for bands B2
to B4 showed good accuracies (Figure 11a), with R2 of 0.77, 0.80 and 0.27; MAPE of 15% and 9%; and 
RMSE of 0.11, 0.04 and 0.07 m−1, for each band, respectively; while B1 showed lower accuracy with 
R2 of 0.18, MAPE of 50% and RMSE of 0.45 m−1. The accuracy results for the non-parametrized QAAv6 

a) b)

Figure 10. Global results for Kd(λ) derived from field Rrs(λ) measurements for: (a) QAATM; and,
(b) QAAv6.

Regarding the slope and offset of the linear regression, QAATM showed a steeper slope and
slightly similar offset when compared to QAAv6 (Figure 10). The different reference wavelength used
in each QAA approach has a visible interference in the slope of the regressions and the accuracy of the
results for each chosen band. QAATM approach had better accuracies for the lower values of Kd−SA(λ),
agreeing most with the bands at 492, 560 and 665 nm (B2 to B4), while it overestimates higher values of
Kd(λ) at 443 and 704 nm (B1 and B5). Besides that, QAAv6 had a better agreement with values at 560
and 665 nm (B3 and B4), overestimating the results of Kd−SA(λ) at 443 and 492 nm and overestimating
results at 704 nm (B5).

The results of Kd−SA(λ) were also statistically assessed from B1 to B4 (Figure 11) to compare
QAATM accuracy with the non-parametrized QAAv6 accuracy. For QAATM, the results for bands
B2 to B4 showed good accuracies (Figure 11a), with R2 of 0.77, 0.80 and 0.27; MAPE of 15% and 9%;
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and RMSE of 0.11, 0.04 and 0.07 m−1, for each band, respectively; while B1 showed lower accuracy
with R2 of 0.18, MAPE of 50% and RMSE of 0.45 m−1. The accuracy results for the non-parametrized
QAAv6 (Figure 11b) were worse when compared to those for QAATM, with R2 values of 0.27, 0.79,
0.82, and 0.35; MAPE of 16, 23, 19, and 12%; and RMSE of 0.16, 0.14, 0.08, and 0.11 m−1, for bands B1 to
B4 respectively. These statistical results, slopes and offsets for each band linear regression (Figure 11)
agree with the overall results shown in Figure 10 above. While QAATM showed better results for the
band at 560 followed by 665 and 492 nm respectively, the QAAv6 showed better results for the band at
665, followed by 560 nm.
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3.5. Satellite Validation

3.5.1. Glint Correction

After the glint effect removal from band B3 to B5 resulted in Rrs more similar to those of the in
situ Rrs(λ). Regarding bands B1 and B2, however, despite the improvement, Sentinel-2 Rrs(λ) were
overestimated (Figure 12). Even after the glint removal most of the bands remained with significant
errors in its values when compared with in situ measurements. The bands B3 (560 nm) and B4 (665 nm)
achieved the best results after the glint removal, with R2 of 0.90 and 0.82 and MAPE of 11 and 33%,
respectively. While the results for bands B1 (443 nm), B2 (492 nm) and B5 (704 nm) achieved the worst
results, with MAPE higher than 58% (Figure 12).
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3.5.2. Sentinel-2 MSI Kd−SA(λ) Validation

Finally, the accuracy of Kd−SA(λ) derived from the MSI image was assessed for each band from
B1 to B4 (Figure 13). QAATM results from band B1 to B3 showed the highest accuracies (Figure 13a),
with R2 of 0.43, 0.70 and 0.56; MAPE of 14, 14 and 38%; and RMSE of 0.14, 0.10 and 0.15 m−1, for each
band, respectively.
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Because there were images only from the 2019 campaign, the MSI image results were only
validated for the stations measured that year.

The supplementary material of this paper includes the summary for the Kd−SA(λ) derived from
MSI bands Rrs(λ) validations for QAAv6 (Figure S1).

3.5.3. Sentinel -2 MSI Kd−SA(λ) Time-Series

Kd−SA(λ) had the highest accuracies when using bb(λ) and a(λ) derived from QAATM as input.
Moreover, only the bands from B1 to B3 produced good statistical results, indicating that the approach
combining QAATM plus Kd−SA(λ) should be applied only to these bands regarding the time series
production. Figure 14 shows the monthly-averaged variation of Kd−SA(λ) for B2, the reservoir
monthly-averaged inflow rate, and monthly-averaged outflow rate at the dam. Kd−SA(λ) refers to
the Paraopeba River mouth, São Francisco River mouth, reservoir upper, middle and lower stream.
Kd−SA(λ) time series showed a seasonal variation with higher values achieved during the rainy season
for the assessed years (2017–2019).
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Generally Kd−SA(492) highest values were found for the rainy period of the year (Figure 15),
coinciding with the months with higher accumulated precipitations and higher monthly-averaged
flow rates (October to March) [30].
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Representative Kd−SA(492) results for two consecutive rainy and dry seasons are shown in
Figure 16. During the dry season (Figure 16b,d), the Kd−SA(492) is more spatially homogeneous,
while for the rainy season (Figure 16a,c), higher gradients can be found, mostly at the entrance of the
tributaries and in the upper portion of the reservoir.
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4. Discussion

4.1. Algorithms Results Comparison

The Kd−SA(λ) retrieved using IOPs derived from QAATM as input achieved better performance
compared when using IOPs derived from QAAv6 for both in situ (Figure 11) and MSI (Figure 13)
Rrs(λ) applicaiton. The linear regression at 492 nm for in situ data achieved slope factors of 1.21
and 0.96 for the QAATM and QAAv6 approaches respectively. Besides that, the results in term of
MAPE and RMSE were better for the QAATM approach, achieving MAPE of 15%, and RMSE of
0.11 m−1 (Figure 11b) against MAPE of 23%, and RMSE of 0.14 m−1 for Kd−SA(λ) retrieved with QAAv6,
(Figure 11f) indicating better Kd−SA(λ) accuracy when using QAATM approach.

For the MSI application, QAATM approach also achieved better results when compared to QAv6.
The Kd−SA(λ) derived when using MSI bands as input to retrieve IOPs from QAATM showed higher
accuracies for bands B1 and B2 (Figure 13a), with R2 of 0.44 and 0.70, MAPE of 13.5 and 14%, and RMSE
of 0.14 and 0.10 m−1, respectively. For MSI B3 (Figure 13a), MAPE reached 40%, despite the reasonable
R2, and RMSE values of 0.56 and 0.15 m−1, respectively. B4 showed the worst result, achieving R2 of
0.00, MAPE of 40%, and RMSE of 0.28 m−1 (Figure 13a). For the QAAv6, all results were not good,
achieving R2 of 0.57, 0.69, 0.69, and 0.32; MAPE of 88, 84, 79, and 72%; and RMSE of 0.76, 0.50, 0.30,
and 0.48 for bands B1 to B4, respectively (Figure 13b).

These results show that the Kd−SA(λ) [25,26] reparametrization combining the QAAv6 and
Liu et al. [57] methodology to derive IOPs is a suitable approach for waters optically similar to those of
the TM reservoir.

In terms of comparison with the known Kd(490) empirical algorithms found in the literature,
the Kd−SA(λ) algorithm using the QAATM approach had good results. Table 6 shows the statistical
results for 4 Kd(490) empirical algorithms developed for different types of water. The MAPE of 14%
and RMSE of 0.10 m−1 achieved by the Kd−SA(λ) algorithm proposed in this study for the MSI data
corroborate with the statement that this algorithm had good results.

Table 6. Empirical algorithms for Kd(490 nm) estimates based on literature.

Local/Dataset Kd(490) Range [m−1] R2 MAPE [%] RMSE [m−1] Source

COASTLOOC/NOMAD >0.2 0.84 - 31.00 [%] *1 [64]

Inland and coastal waters <6.1 0.99 - 0.13 [65]

Lake Taihu <11 0.81 19.55 0.99 [66]

Three Gorges Reservoir and Dongting Lake <8 - 23.18 0.61 [67]

*1 [64] presented the percentage RMSE values.

4.2. Temporal Variation of the Diffuse Attenuation Coefficient of the Downwelling Irradiance

The highest Kd−SA(492) values occurred during the rainy seasons, displaying peaks of almost
12 and 6 m−1 at its entrances for December 2017 and 2018, respectively (Figure 14). The Kd−SA(492)
spatial distribution (Figure 16) shows that São Francisco and Paraopeba River mouths display the
higher values, followed by the TM upstream region, just before the two rivers confluence.

The raise of Kd−SA(492) can be explained by increases in the turbidity [17,68], the chla [18,19],
or the stratification caused by heat transfer in the upper layer of the water column [20].

Regarding the Brumadinho disaster, it was not possible to infer if it has affected the TM reservoir
water transparency, once it occurred during the 2019–2020 rainy period (November–February),
which was not included in the time-series of this study.
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4.3. Limitation Factors in the Diffuse Attenuation Coefficient of the Downwelling Irradiance Retrieval

4.3.1. Limitations of the Algorithms

The approach applied in this study uses a combination of two semi-analytical algorithms
parametrized for TM reservoir. Besides the fact that the algorithms used are semi-analytical, the QAA
has some empirical steps that were reparametrized using data acquired in a single date. However, well
parametrized semi-analytical algorithms usually do not lose accuracy when applied with input data
from other periods of the year.

4.3.2. Semi-Analytical Algorithm Reparametrization

The values for the total a(λ) measured with the ACS were gathered for 2013 campaign, so
the reparametrization of QAATM empirical steps proposed in this study used only 2013 data,
while validation used 2019 data.

The results of the reparametrization QAATM step 2 (a(λ0)—Figure 9a) were influenced by two
stations with higher values for the a(λ0). These two stations were those with the higher values
for all in situ limnology and radiometric data presented in this study (P25 and P26), as presented
in the Sections 3.1 and 3.2. These stations were positioned near to the main tributaries entrances
(São Francisco River and São Vicente Brook). These measurements are relevant since they represent
the upper portion of the reservoir.

The reparametrization of QAATM step 4 (Figure 9b) is dependent on the remote sensing reflectance
and total absorption coefficient parameters, as they are used for bbp estimates and can represent a
source of uncertainty in the estimation. Despite that, this approach was used by other authors [57]
and the accuracy are reliable for retrieving bbp values when no in-situ measurements are available.
Further, the results of Kd−SA(λ) proposed in this study where most affected at wavelengths with higher
values (443 and 704 nm), those were MSI bands wavelengths (B1 and B5) that are not so relevant for
clear water studies. The band B1 is an aerosol band used for quality assessment with a lower spatial
resolution. While band B5 is a band at a wavelength where the total absorption in the water column is
almost totally composed by the absorption of the pure water (Figure 7).

Furthermore, the MSI application for 2019 data was carried out for a single date in the middle
of the campaign. The campaign occurred from 30 of June to 2 of July, with the image acquired for
the 1st of July, which is not a significant limitation of the algorithm, since it did not rain during the
campaign. However, the temporal resolution of MSI for Três Marias tile (5 days) and the field operation
restrictions do not allow for the use of more images.

5. Conclusions

This study provides a bio-optical characterization for the TM reservoir for two dates during the
2013 and 2019 dry seasons. This characterization helped us to parametrize and apply the Kd−SA(λ) for
the water column. It followed international protocols for tropical aquatic systems data collection and
processing, representing an important contribution for inland waters remote sensing applications.

The parametrized algorithm achieved more accurate results for Kd−SA(λ) derived from field
measurement when compared to Kd−SA(λ) derived from the MSI image. Besides that, this approach
showed good results for most of the MSI bands, making systematic monitoring of the water quality in
the reservoir possible, and allowing a 5-day analysis.

To establish a very good spectrally accurate semi-analytical algorithm to estimate Kd−SA(λ) for
TM reservoir waters we suggest:

• Bio optical data collection during rainy periods of the year to reparametrize the algorithm with
more variated data;

• Establishment of new algorithms for the correlation between OACs and optical properties of the
water to better understand the primary production dynamics of the reservoir;
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• Assessment of other atmospheric correction and glint removal methodologies;
• Apply the Kd−SA(λ) plus QAATM approach to a time-series including 2020 rainy period to better

understand the Brumadinho disaster effects;
• Apply the Kd−SA(λ) plus QAATM approach to other small reservoirs just upstream of TM in

the Paraopeba River course, assessing the possibility of the retention of sediments coming from
Brumadinho into these reservoirs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/17/2828/s1,
Figure S1: Kd−SA(λ) derived from MSI bands Rrs(λ) validations for QAAv6 at: (a) 443; (b) 492; (c) 560; and,
(d) 665 nm.
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