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Abstract: During the latest decades, the Amazon has experienced a great loss of vegetation cover,
in many cases as a direct consequence of wildfires, which became a problem at local, national,
and global scales, leading to economic, social, and environmental impacts. Hence, this study is
committed to developing a routine for monitoring fires in the vegetation cover relying on recent
multitemporal data (2017–2019) of Landsat-8 and Sentinel-2 imagery using the cloud-based Google
Earth Engine (GEE) platform. In order to assess the burnt areas (BA), spectral indices were employed,
such as the Normalized Burn Ratio (NBR), Normalized Burn Ratio 2 (NBR2), and Mid-Infrared
Burn Index (MIRBI). All these indices were applied for BA assessment according to appropriate
thresholds. Additionally, to reduce confusion between burnt areas and other land cover classes,
further indices were used, like those considering the temporal differences between pre and post-fire
conditions: differential Mid-Infrared Burn Index (dMIRBI), differential Normalized Burn Ratio (dNBR),
differential Normalized Burn Ratio 2 (dNBR2), and differential Near-Infrared (dNIR). The calculated
BA by Sentinel-2 was larger during the three-year investigation span (16.55, 78.50, and 67.19 km2)
and of greater detail (detected small areas) than the BA extracted by Landsat-8 (16.39, 6.24, and
32.93 km2). The routine for monitoring wildfires presented in this work is based on a sequence of
decision rules. This enables the detection and monitoring of burnt vegetation cover and has been
originally applied to an experiment in the northeastern Peruvian Amazon. The results obtained by
the two satellites imagery are compared in terms of accuracy metrics and level of detail (size of BA
patches). The accuracy for Landsat-8 and Sentinel-2 in 2017, 2018, and 2019 varied from 82.7–91.4% to
94.5–98.5%, respectively.
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1. Introduction

Wildfires have been a common phenomenon throughout time and are caused by ignition
sources, either human or natural, and their interaction with climate factors that foster combustion
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and propagation [1,2]. Fires in vegetation cover generate negative impacts in most of the global
biomes, like grasslands/savannahs (tropical and subtropical), forests (Mediterranean, temperate,
boreal, and Amazonian), and agricultural fields [3,4]. Such fires may likewise negatively affect
biodiversity, forest structure, and resilience to climate change [5,6]. The susceptibility to fires and their
spatiotemporal distribution in the Amazon Forest are associated with extreme droughts caused by
abnormal increases in sea surface temperature, like El Niño Southern Oscillation (ENSO), as well as
the intensification of land use [7,8]. According to [9], land use intensification is broadly defined as
activities undertaken with the intention of enhancing the productivity or profitability per unit area of
rural land use, including the strengthening of particular land uses as well as changes between land
uses. Remote sensing emerges as a feasible alternative for monitoring fires in the Amazon Forest,
with its large extension of 5.5 million km2. Satellite images offer a synoptic view, systematic coverage,
besides a speed-up and cost-effective acquisition [4].

In the early 2000s, the first global burnt areas (BA) data were released based on the National Oceanic
and Atmospheric Administration Advanced Very High Resolution Radiometer (NOAA–AVHRR)
imagery with a spatial resolution of 1000 m [10,11]. In recent years, however, several accessible
and easily manageable BA products at a global scale were rendered available [12]. Among them,
data from the low resolution sensors Medium Resolution Imaging Spectrometer (MERIS, 300 m)
and Moderate Resolution Imaging Spectroradiometer (MODIS, 250–500 m) are worthy of notice [12].
Medium resolution and open access data [3,12] from Landsat-8 Operational Land Imager (OLI, 30 m)
and Sentinel-2 Multi Spectral Instrument (MSI, 10 m) have been as well available for the detection
of BA [13]. All these data can be processed in the cloud-based Google Earth Engine (GEE) platform,
which allows the analysis and visualization of massive geospatial data at a large scale [14].

It is mandatory to obtain consistent compiled wildfires data over a large period of time in order
to support studies for the detection of historical wildfires [4,15,16], their spatial pattern, and the
evaluation of their social and environmental impacts [17,18]. These data are also useful to identify if
the wildfires’ occurrence and impacts are related to drivers like climate change, relief, land cover and
land use change, environmental policies and management [19,20]. Among the studies on burnt areas
in the literature, the work of Chuvieco and Congalton [21] is to be cited, in which the authors carried
out visual interpretation of Landsat Thematic Mapper (TM) images to map wildfires’ boundaries,
which were then validated with the aid of a supervised maximum likelihood classification. Further
studies also employed visual analysis of satellite imagery to delineate zones affected by fires [22,23].
More recently, visual analysis and parametric methods have given place to refined spectral indices and
machine learning approaches [24–30].

Remotely sensed data processing is an essential requirement for generating sound spatial
information, with scientific quality and appropriateness for monitoring wildfires in the medium and
long-run at local, regional, and global scales. The greater availability of medium spatial resolution
sensors enabled the development of several algorithms for extracting BA at local and regional
levels [31–33]. In parallel to this, the spectral analysis of satellite imagery nowadays tends to use
manifold spectral indices, which employ the visible range of the Electromagnetic Spectrum (VIS),
as well as the Near-Infrared (NIR), the Short-Wave Infrared 1 (SWIR1), and the Short-Wave Infrared
2 (SWIR2) ranges to assess burnt areas and/or burn severity of wildfires [12,34,35]. Among those
indices, we ought to mention the Normalized Burn Ratio (NBR) [36] and its difference in relation to the
value obtained prior to the wildfire event (dNBR), which allows the evaluation of the BA extent and
severity [37]. Other indices like the Mid-Infrared Burn Index (MIRBI) [38], the Normalized Burn Ratio
2 (NBR2) [39], and the Normalized Difference Vegetation Index (NDVI) [40] are able to provide fine
scale and reliable annual BA estimates [12,34].

In this study, we focus on the Amazonas department, an administrative division that contains
part of the Peruvian Amazon in northeastern Peru, where the wildfires occur very often during the dry
season (from July to November) [41]. The greater part of these fires are caused by human beings [42],
and, to a lesser extent, by natural ignition sources and their interaction with climate factors that favor
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combustion and propagation. Their extension and frequency are directly related to the temperature,
humidity, wind, the type and characteristics of vegetation, relief, among other factors [2]. The locals use
the fires to clean up the terrain and prepare the soil for planting [43]. Considering what was previously
mentioned, the goal of this research is to develop a decision rules-based routine for monitoring wildfires
employing Landsat-8 and Sentinel-2 imagery and using the cloud-based GEE platform. A comparison
between the BA products derived from these two satellite imagery collections is also envisaged.

2. Materials and Methods

2.1. Study Area

The Amazonas department is part of the Peruvian Amazon and extends over a surface of
39,306.47 km2 (Figure 1, 3◦0′–7◦2′ S and 77◦0′–78◦42′ W), with elevations that range from 120 m.a.m.s.l.
in the north to 4900 m.a.m.s.l. (meters above mean sea level) in the south. It comprises seven provinces
(Bagua, Bongará, Chachapoyas, Condorcanqui, Luya, Rodríguez de Mendoza, and Utcubamba),
with a total population of 379,384 inhabitants and a density of 9.6 inh./km2 [44]. This administrative
division is composed of the interandean sector, which occupies 27.0% of its surface, and the Amazon
Forest sector, which corresponds to the remaining 73.0% of the area. The Amazonas department
contains a great diversity of natural resources, with complex and fragile ecosystems (Andean, lowland
forest, highland forest, and tropical dry forest) [45], mostly covered by unexplored tropical forests [46].
The climate changes according to the geographic conditions, although the “warm and wet” climate
prevails in Condorcanqui and in part of Rodríguez de Mendoza. There are other dissimilar climates
scattered throughout the region, like the “warm and dry” climate in Bagua and Utcubamba provinces,
and the “mildly wet and temperately warm” climate in Chachapoyas and Luya. The temperature rises
up to 40 ◦C in the lowland forests (in the north) and the minimum temperature reaches 2 ◦C in the
Andean Mountains (in the south) [45,47]. The land cover and land use in this region are predominantly
represented by forests (forest formation and floodplain forest), followed by agriculture, natural
formation (floodplain non-forest natural formation and grasslands), and non-vegetated areas [48].

The most outstanding economic activities in this region are agriculture (cropping and cattle
raising) and the industrial activity, which respectively account for 51.2% and 14.5% of the regional
Gross Domestic Product (GDP) [45]. These activities lead to deforestation, overgrazing, migratory
agriculture, soil contamination and erosion, wildfires, and illegal logging and mining. It has been
identified that 27.4% (11,533.93 km2) of this department’s surface is degraded [41,49]. During the
period from 2002 to 2017, there were 130 forest fires [50]. This is a consequence of migratory agriculture
and the opening of new accesses and land routes, such as connection axes for departmental and
national economic development actions that affect a great variety of flora and fauna species [41,42].
Furthermore, the vegetation cover map of this region reported that only in 2018, 7453 ha of rain forests
were lost [51]. Since the Amazonas department contains the greatest share of wildfires events in the
Peruvian Amazon (Figure 2), it has been selected as our study area.
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Figure 2. Wildfires occurred in Luya province, in the Amazonas department: (a) Left side of the road 
towards the villages of La Unión—San Jerónimo (July 2019); (b) Fortress Kuélap (August 2019). 
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spectral indices; classification; spatiotemporal filtering; mapping of BA; and statistical validation. 
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The Terra MODIS C6 product, belonging to the Fire Information for Resource Management System
(FIRMS), registered 3539 wildfires in the Amazon from 2001 to 2019. The months of August (42),
September (35), October (29), and November (30) presented the greatest monthly averages. In their
turn, the years with the largest number of wildfires were 2005 (482), 2010 (270), and 2016 (343),
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respectively [52]. The surface of burn scars in the Amazonas department totalized 189.87 km2 [53].
Usually, these fires are caused by human action through agricultural practices, while in some other
cases, they are also triggered by ignition sources, both of them with dramatic effects on the Amazon
ecosystems [41,42]. In this context, it is extremely important to detect burnt areas so as to assess their
spatiotemporal pattern as well as to conceive and implement prevention actions.

2.2. Data Processing

The adopted methodology is presented in Figure 3, which includes Landsat-8 and Sentinel-2
multispectral data acquisition; masking of clouds, cloud shadow, and water bodies; calculation of
spectral indices; classification; spatiotemporal filtering; mapping of BA; and statistical validation.

2.3. Google Earth Engine (GEE)

This platform operates in the logic of “Big Data” and contains not only Landsat-8 and Sentinel-2
data, but further remotely sensed raster data possessing an order of magnitude of petabytes and
rendered publicly available by agencies like the National Aeronautics and Space Administration
(NASA), the European Space Agency (ESA), and others [14]. GEE also enables access to digital images
processing and machine learning algorithms as well as to libraries of Application Programming
Interfaces (API) (such as JavaScript, Python, and R) and scripting interfaces, in which users can
develop their own codes and process data online. Thus, GEE allows the manipulation, analysis,
and visualization of geospatial data without the need to access supercomputers [54].

2.4. Satellite Multispectral Data and Fire Products

There are several products that enable to detect BA. In this study, we employed medium spatial
resolution satellite data available in the GEE platform, like the collection of Surface Reflectance
(SR) multispectral images of Landsat-8 OLI/TIRS Tier 1 (ID: LANDSAT/LC08/C01/T1_SR) and the
Top-Of-Atmosphere (TOA) images in the case of Sentinel-2/MIS level-1C (ID: COPERNICUS/S2) [55].
The data acquisition and processing comprised the time span from 2017 to 2019, in view of data
availability (Tables 1 and 2). Each imagery collection was individually classified. For Landsat-8,
we worked with the original spatial resolution of 30 m, while for Sentinel-2, we adopted
a standard spatial resolution of 15 m, obtained by means of resampling using the nearest neighbor
interpolation technique.

2.5. Masking of Clouds, Cloud Shadow, and Water Bodies

Masking was an important processing step due to the fact that the study area presents clouds
during most of the year. This process allowed the masking of clouds, cloud shadow, and water bodies.
The algorithm C Function of Mask (CFMASK) was applied to Landsat-8 images, so as to detect clouds
and cloud shadow [56]. In the case of the Sentinel-2 images, the algorithm Google CloudScore was
applied to mask clouds, and the algorithm Temporal Dark Outlier Mask (TDOM) to mask cloud
shadow, with the aid of the Quality Assessment band (QA60) [57]. For the sake of masking pixels
presenting noise derived from cloud shadow, a threshold was applied to band B12, where B12 < 0.07
was considered cloud shadow [12]. Considering the often presence of cirrus clouds, a threshold was
also applied to band B2 (B2 > 0.15) [58]. Lastly, the Normalized Difference Water Index (NDWI) was
applied to detect and mask water bodies [59].
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Table 1. Spatial and spectral general characteristics and number of images per year for the Landsat-8
and Sentinel-2 collections.

Collection Spectral Bands Temporal Resolution Spatial Resolution
Nr. of Images * (Cloud Cover < 50%)

2017 2018 2019

LANDSAT/LC08/C01/T1_SR 9 bands 16 days 30 m 28 39 33
COPERNICUS/S2 13 bands 5 days 10, 20, and 60 m 156 487 426

* Total number of mosaic images for the study area.

Table 2. Spatial and spectral resolutions of Landsat-8/OLI and Sentinel-2/MSI.

Landsat-8/OLI (µm) Band Resolution (m) Sentinel–2/MSI (µm) Band Resolution (m)

Band 2 (0.45–0.51) Blue 30 Band 2 (0.46–0.52) Blue 10
Band 3 (0.53–0.59) Green 30 Band 3 (0.54–0.58) Green 10

Band 4 (0.64–0.67) * Red 30 Band 4 (0.65–0.68) * Red 10
Band 5 (0.85–0.88) * NIR 30 Band 5 (0.7–0.71) Red-edge-1 20
Band 6 (1.57–1.65) * SWIR-1 30 Band 6 (0.73–0.75) Red-edge-2 20
Band 7 (2.11–2.29) * SWIR-2 30 Band 7 (0.76–0.78) Red-edge-3 20
Band 8 (0.50– 0.68) Panchromatic 15 Band 8 (0.78–0.90) * NIR 10

Band 8A (0.85–0.87) NIR plateau 20
Band 11 (1.56–1.65) * SWIR-1 20
Band 12 (2.10–2.28) * SWIR-2 20

* Bands used in the classification of burnt areas.

2.6. Mosaic of Pre and Post-Fire Images

This process initially grouped (mosaiced) the time series data by every two months, which was
meant not only to build a mosaic with a minimum amount of clouds, but also to reduce the input data
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dimensionality. In the sequence, pre-selected filters were applied for excluding pixels with clouds,
cloud shadow, and water bodies from the Landsat-8 and Sentinel-2 multitemporal data. For the creation
of pre and post-fire mosaics, the NBR and NDVI were applied. The elaboration of the pre-fire mosaic
consisted in selecting the pixels with maximum values of the NDVI along the time series, while for the
post-fire mosaic, the pixels with maximum values of the NBR were selected.

2.7. Spectral Indices for Burnt Areas (BA) Mapping

Four indices commonly used to extract BA were selected (Table 3) [12,34,60]. The following
spectral bands were used: Visible Red (Red), Near Infrared (NIR), Short-Wave Infrared 1 (SWIR1),
and Short-Wave Infrared 2 (SWIR2).

Table 3. Spectral indices used for estimating BA.

Name Abbreviation Formula Source

Normalized Difference Vegetation Index NDVI NDVI =
(

NIR−Red
NIR+Red

)
[61]

Normalized Burn Ratio NBR NBR =
(

NIR−SWIR2
NIR+SWIR2

)
[36]

Normalized Burn Ratio 2 NBR2 NBR2 =
(

SWIR1−SWIR2
SWIR1+SWIR2

)
[39]

Mid-InfraRed Burn Index MIRBI MIRBI = (10.0 ∗ SWIR2) − (9.8 ∗ SWIR1) + 2 [38]

The NDVI is one of the most known and widely used vegetation indices, which takes into account
the amount of absorbed visible red light by the green vegetation. In a general way, the NDVI is sensitive
to the content of chlorophyll and other pigments responsible for absorbing solar radiation in the red
range of the electromagnetic spectrum, while the Enhanced Vegetation Index (EVI) is more sensitive to
the variation in the canopy structure, including the Leaf Area Index (LAI), the plant physiognomy,
and the canopy volume [62,63]. The EVI and the Soil Adjusted Vegetation Index (SAVI) make use of
atmospheric correction and soil parameters that would lead to a greater uncertainty in the calculation
of thresholds to identify burnt areas. The fire-induced damage caused to the vegetation results in
a substantial decrease in the NDVI [34,64], and hence, we have selected the NDVI for BA detection.

The time series analyses revealed that the NBR2 has shown to be efficient in discriminating burnt
from unburnt areas [12,38]. In this way, the pixels with maximum values of the NDVI and NBR2 were
selected for differentiating pre-fire from post-fire areas (BA), respectively.

Based on the generated information, it was then necessary to set appropriate thresholds for the
pre and post-fire differential spectral indices, namely dMIRBI [65], dNBR [66], dNBR2, and dNIR [65].
This procedure was executed considering 444 sampled points by means of visual analysis with the aim
of defining the BA thresholds [12] (Figure 4). The application of these differential spectral indices to
the images led to the classification of “burnt” and “unburnt” areas (Figure 5) according to the defined
thresholds [67], which then framed the decision rules-based routine in the GEE platform [68].
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2.8. Images Filtering

A temporal filter based on the NBR was applied for the purpose of eliminating inconsistencies (or
changes in BA) and also to correct errors due to cloud plumes, absence of information, or duplicity of
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fire dates. To this end, the oldest date in the results was considered for classification. Such temporal
filter was applied to the time series of each year and consisted of defining rules of permanence for
the NBR values. Regarding the Landsat-8 data, an area was assigned as BA if it presented at least
one positive value of the dNBR along the whole time series (due to the limited images availability).
For each of the Sentinel-2 annual data, at least two positive values of the dNBR in the whole time series
were required to ascribe an area as BA (Figure 6). A spatial filter with a minimum mapping unit of
0.5 ha [69] was also applied. Isolated and border pixels were eliminated by means of neighborhood
filters, aiming at improving the data spatial consistency. Areas with rice cultivation were also excluded
(on sites with slope < 5◦), particularly in the Utcubamba river valley.
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Figure 6. Example of a time series to identify BA in the study area. (+) Rule for the Landsat-8 time
series, which requests a fire occurrence at least in one month to assign an area as BA. (++) Rule for the
Sentinel-2 time series, which requests fire occurrences at least in two months to consider an area as BA.

2.9. Statistical Validation of BA

Error matrices were elaborated based on the BA classification and reference data (n sampled
observations), which enabled the evaluation of the results’ accuracies for each analyzed year [70].
The comparison between the BA product and the reference data was based on the proportion of each
pixel classified as burnt or unburnt in the Landsat-8 and Sentinel-2 images. Thus, we calculated
the user’s accuracy (UA), which corresponds to commission errors (from the user’s perspective),
and the producer’s accuracy (PA), associated with omission errors (from the perspective of the map
producer) [71,72]. Furthermore, we calculated the overall accuracy, which indicates the quality of the
classification result in terms of quantity; F-Score (F1), which provides relations between data’s positive
labels and those given by a classifier [73]; the Quantity component (Qt), which reveals the absolute
differences in quantity for each category (burnt and unburnt areas) in both observed and classified
data; the Exchange component (Et), which assesses the share of changes from burnt to unburnt areas
and vice versa with the same proportions in the reference and classified data, without modifying the
final quantities [74].

2.10. Identification of BA Patterns

With the aim of creating a continuous surface able to represent the wildfires intensity at the
Amazonas department level, Kernel Density Estimation (KDE) was used [75]. The KDE [76,77]. Next,
the density map was reclassified according to the Jenks natural breaks classification method [78] in five
classes related to different levels of BA density: very low, low, moderate, high, and very high [28,41,50].
Finally, the quality of the spatial agreement was evaluated using Yule’s Q coefficient [79].
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3. Results

3.1. Validation of the Achieved Results for Assessing BA

The BA statistical validation was achieved based on the visual interpretation of 456 test sites, so as
to allow for a comparative evaluation of the UA, PA, accuracy, F1, Qt, and Et between the Landsat-8 and
Sentinel-2 products. The accuracy obtained by Landsat-8 in the years 2017, 2018, and 2019 (Table 4) lay
between 82.7% and 91.4%, and the UA ranged from 66.7% to 98.7%. The PA varied from 74.8% to 98.5%
and F1 indices reached values from 79.4% to 90.8%, respectively. Sentinel-2 presented otherwise better
values, with an accuracy between 94.5% and 98.5%, UA varying from 92.1% to 99.1%, PA ranging from
92.5% to 99.1%, and F1 attaining values oscillating between 94.4% and 98.5%, respectively (Table 4).
The Qt values for Landsat-8 oscillated from 84 to 92 and for Sentinel-2, from 43 to 57 during the
analyzed period. In its turn, the Et values for Landsat-8 varied from 8 to 16, while for Sentinel-2,
these values lay between 43 and 57.

Table 4. Accuracy indices for the burnt and unburnt areas classification executed in Landsat-8 and
Sentinel-2 multitemporal images.

Year Satellite
PA (%) UA (%) Accuracy F-Score (F1) Qt (Quantity

Component)
Et (Exchange
Component)Burnt Unburnt Burnt Unburnt (%) (%)

2017
Landsat-8 98.5 86.2 84.2 98.7 91.4 90.8 85 15
Sentinel-2 98.6 95.3 95.2 98.7 96.9 96.9 57 43

2018
Landsat 8 98.1 74.8 66.7 98.7 82.7 79.4 92 8
Sentinel-2 96.8 92.5 92.1 96.9 94.5 94.4 44 56

2019
Landsat-8 97.8 83 79.8 98.2 89 87.9 84 16
Sentinel-2 97.8 99.1 99.1 97.8 98.5 98.5 43 57

3.2. BA in the Amazonas Department

Wildfires in the Amazonas department showed to be of reduced extent in 2017 and 2018 as
compared with 2019. An annual comparison of BA per product is presented in Table 5. In 2017,
Landsat-8 registered an area of 16.39 km2, 0.96% smaller than the Sentinel-2 product, which assessed
16.5 km2 of surface. In 2018, Landsat-8 recorded an extension of BA of 6.24 km2, while the Sentinel-2
product reported an area of 78.50 km2 (1158.48% greater than Landsat-8). Finally, in 2019 the BA
extension was of 32.93 and 67.19 km2 (the latter one being 104.05% greater), as registered by Landsat-8
and Sentinel-2, respectively.

Table 5. Burnt areas (ha) according to the evaluated year resulting from the Landsat-8 and Sentinel-2
products in the Amazonas department (Peru).

Satellite
Burnt Areas (km2)

2017 2018 2019

Landsat-8 16.39 6.24 32.93
Sentinel-2 16.55 78.50 67.19

Figure 7 shows the occurrence of wildfires in the analyzed years. It can be inferred that the
wildfires frequency increases between June and December and this behavior tends to repeat throughout
the years.
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3.3. Spatial Agreement of BA

A spatial comparison of BA patches derived from the Landsat-8 and Sentinel-2 products per
analyzed year is shown in Figure 8. The centroids of the BA polygons show a similar spatial distribution
pattern in both satellite products, although Sentinel-2 has comparatively produced a greater number
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and larger patches of wildfires burn scars with respect to those generated by Landsat-8 during the
evaluated years, in the face of its higher spatial (15 m) and temporal (5 days) resolutions.
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(f) Sentinel-2 in 2019.

3.4. Patterns of BA Density

The maps elaborated based on the KDE method considering the three-year time detection of BA
using the Landsat-8 and Sentinel-2 products (Figure 9) show “very high”, “high”, and “moderate”
wildfires densities in the southwest of the Amazonas department, amid Utcubamba, Luya, Chachapoyas,
and Bongará provinces. This indicates that environmental policies and actions should pay greater
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attention to such vulnerable areas. On the other hand, the provinces Rodríguez de Mendoza, Bagua,
and Condorcanqui register “low” and “very low” densities within their territories (Figure 9).
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Figure 9. Maps of wildfires densities in the Amazonas department as a function of burnt areas (BA)
clustering; (a) Density of BA resulting from Landsat-8; (b) Density of BA resulting from Sentinel-2.

It was observed that wildfires take place near human settlements (populated areas) and the road
network. Approximately 20% of fires are located within a distance to settlements and roads from 0 to
600 m, 20% between 600 and 1200 m, and the remaining 60% of these events occur beyond 1200 m of
distance (Supplementary Materials Figure S1). The wildfires in the study area mostly started on sites
with slopes greater than 8◦ (nearly 90% of all events) and only 10% of them occur on sites with slopes
between 0◦ and 8◦ (Figure S2 and Table S8). With respect to the settlements’ proximity, the majority of
fires (90%) start within distances superior to 1600 m (Figure S3 and Table S8).

The spatial agreement between BA resulting from Landsat-8 and Sentinel-2 is shown in Table 6.
In 2017, the agreeing BA and unburnt areas (UA) between these two products had a surface of 3.51
and 39,277.04 km2, respectively, with an omission error of 0.21 and an extension coefficient of 1.00.
In 2018, the agreeing BA had a size of 2.35 km2 and an agreeing UA of 39,224.09 km2, presenting
an omission error of 0.38 and an extension coefficient of 1.00. In 2019, there was an increase in the
BA spatial agreement with regard to previous years (totaling an area of 18.88 km2) and the agreeing
UA was limited to 39,225.23 km2, with an omission error of 0.57 and an extension coefficient of
1.00. The Q coefficient, in its turn, presented values of 1.00, 0.99, and 1.00 for the years 2017, 2018,
and 2019, respectively.
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Table 6. Spatial agreement of BA resulting from Landsat-8 and Sentinel-2 in 2017, 2018, and 2019.

Burnt Area
Sentinel-2 Spatial Comparison

Burnt Unburnt Total (km2) Omission Extension

2017

Landsat-8
Burnt 3.51 12.88 16.39

0.21 * 1.00 **Unburnt 13.04 39,277.04 39,290.08
Total (km2) 16.55 39,289.92 39,306.47 Q Coefficient 1

2018

Landsat-8
Burnt 2.35 3.89 6.24

0.38 * 1.00 **Unburnt 76.15 39,224.09 39,300.24
Total (km2) 78.50 39,227.98 39,306.47 Q Coefficient 0.99

2019

Landsat-8
Burnt 18.88 14.05 32.93

0.57 * 1.00 **Unburnt 48.31 39,225.23 39,273.54
Total (km2) 67.19 39,239.28 39,306.47 Q Coefficient 1.00

* Omission = 1 − (Burnt Landsat-8 and Unburnt Sentinel-2/total Burnt). Source: de Barros [80]. ** Extension= 1 −
(Unburnt Landsat-8 and burnt Sentinel-2/total Unburnt). Source: de Barros [80].

4. Discussion

In the present study, a comparative performance evaluation of BA products derived from Landsat-8
and Sentinel-2 medium spatial resolution imagery was accomplished. These products were generated
for the northeastern Peruvian Amazon by means of an open access decision rules-based routine
implemented in the GEE cloud computing platform (Table S1). The accuracy of such products were
assessed using error matrices and accuracy indices relying on a common reference dataset, created
according to a stratified random sampling design [71,81]. The overall accuracy ranged from 82.7% to
98.5%, which indicates a satisfactory performance of the proposed routine for identifying burnt and
unburnt areas. The Sentinel-2 products present greater OA (94.5–98.5%) than Landsat-8 (82.7–91.4%).
This can be explained by the fact that the Peruvian Amazon has a wet climate and cloud-free Landsat-8
images are rare (16 days of temporal resolution) [82], while Sentinel-2 presents a better temporal
(5 days) and spatial (10–20 m) resolution, with greater availability of images, which tends to improve
the detection of BA [67].

The comparison between the Landsat-8 and Sentinel-2 products proved to be of value for a sound
detection of BA in the Peruvian Amazon. The literature generally reports that Sentinel-2 offers
higher accuracies [12,83], while some authors consider that Landsat-8 is superior to Sentinel-2 when
compared with MCD64A1 products [60,84]. According to such authors, Landsat-8 owns better spectral
bands than Sentinel-2. Other works integrate both Landsat-8 and Sentinel-2 products to improve BA
estimates [85–87]. In this study, however, the comparison with further products, such as the series
of “MODIS Combined Data” (MCD45, MCD64) and the “Fire Climate Change Initiative” (FIRE CCI),
has not been made in the face of their unfeasible application in the Amazon region [4], due to large
differences in spatial resolution [60]. Some studies have used the product MCD64A1 (coarse resolution)
to detect wildfires at a global scale [88–93], but it is unable to detect small and spatially fragmented
BA, with which the Landsat-8 and Sentinel-2 products can easily cope [60,94]. On the other hand,
several techniques and methodologies have been proposed for mapping BA. One of the most often
used procedures regards the bitemporal images that combine algebraic operations [4], such as the
calculation of spectral indices (NDVI, NBR, NBR2, and MIRBI), and the pre and post-fire temporal
differences between them (dMIRBI, dNBR, dNBR2, and dNIR), which improve the detection of changes
in the vegetation cover, and hence, the identification of BA.

The wildfires in the study area generally take place from June to December (Figure 7).
Manríquez-Zapata [42] reports that fires in the vegetation cover occur in the third and fourth quarters
of the year (July to December). This temporal behavior is associated with the change from the wet to
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the dry season [95], and with meteorological factors (high temperatures, low rainfall rates, and low
relative air humidity) and climate change, which together create favorable conditions for wildfires
occurrence and drastically impact the local ecosystem’s processes [41,50,96]. All these considerations
demonstrate the importance of assessing and taking into account both human and environmental
driving factors of wildfires for proper landscape planning and management [76].

The maps of wildfires densities allow the visualization of priority areas to support decision
making and resources allocation processes, with the aim to reduce the risk of wildfires and to mitigate
their environmental, social, and economic impacts. Moreover, they are useful inputs for landscape
planning and management at local, regional, and global scales [76]. Alternately, unraveling the ignition
sources of wildfires is also an important task, considering that they are greatly dependent on the relief,
natural combustion components (vegetation, soil moisture), and meteorological characteristics [97].
The density of and the distance to roads favor the appearance of susceptible zones to accidental fires, i.e.,
those unintentionally caused by people, since they enable human activities and displacement [97,98].
The human presence is a major factor that influences the occurrence of wildfires, particularly near
populated areas [99]. Unemployment tax and hard living conditions are important socioeconomic
variables that lead to the overexploitation of natural resources, which can imminently cause accidental
fires [97,98]. Such fires can also be a direct consequence of inappropriate cultural practices of the locals.
The terrain slope, in its turn, favors the vertical continuity of vegetation, and hence, the emergence of
hillside winds that ease the propagation of wildfires [100,101].

In the Peruvian Amazon, this type of investigation at a national scale is of strategic importance,
in face of the fact that the wildfires occur as a direct consequence of agricultural activities (cropping
and cattle raising) undertaken in small rural properties (<0.05 km2) [102]. In this sense, this study
contributed with a decision rules-based routine for detecting and monitoring vegetation cover areas
(including forests, bushlands, grassy shrublands, and pastures) affected by wildfires by means of remote
sensing techniques that allowed the quantification of BA in the Amazonas department. The generated
information can be used by authorities and decision makers in the design of policies and strategies
targeted to prevent, control, and/or mitigate the risk of wildfires. The proposed routine can be further
applied to the whole Peruvian Amazon, provided that minor adjustments to the methodology are duly
made. Finally, we ought to remind that if one intends to assess the historical series of BA in the last
four decades (1984–2020) with free satellite imagery, the data from Landsat-5, 7, and 8 can be used.
If one otherwise wishes to identify more recent BA and with a greater level of detail, the data from
Sentinel-2, launched in June 2015, are appropriate.

Among the limitations of this study, the first one to be cited is the limited availability of cloud-free
Landsat-8 and Sentinel-2 images, due to the presence of clouds throughout the year in the study area.
This is the reason why we applied the CFMASK algorithm to the Landsat-8 images and CloudScore and
the TDOM to Sentinel-2 images. A possible alternative to overcome the reduced availability of images
would be the combination of the two collections. Another solution would be the use of the Sentinel-1
mission radar, which is equipped with a Synthetic Aperture Radar (SAR) that collects data regardless
of the weather conditions [103–105] and improves the detection of vegetation change in the presence of
high cloud cover. Additionally, a further alternative for cloud and cloud shadow detection and masking
in Sentinel-2 images would be the use of machine learning [106] and deep learning approaches [107].
The second limitation regards the methodological challenges for discriminating wildfires from fires in
rice crops adopted as a rice straw management practice. This differentiation requires great expertise
from the interpreter conducting the supervised learning. In the case of collaborative mapping in
well-known areas, such discrimination is still possible, but it is seriously limited in the classification of
unknown areas.

5. Conclusions

This study evaluated the potential of a decision rules-based routine relying on Landsat-8 and
Sentinel-2 medium spatial resolution imagery to estimate BA in the northeastern Peruvian Amazon.
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These estimates were executed through training and supervised classification in the cloud-based GEE
platform. The results obtained by the two satellites’ imagery were compared in terms of accuracy
metrics and level of detail (size of BA patches). This is an unprecedented initiative, given that similar
products have been reported for the Peruvian Amazon, especially the Amazonas department, but none
of them have used Sentinel-2 data. This study relied on different procedures and products for mapping
BA, making use of spectral indices extracted from pre and post-fire images (dMIRBI, dNBR, dNBR2,
and dNIR).

The BA resulting from Sentinel-2 were comparatively larger in extension (km2) and presented
higher accuracies than the ones derived from Landsat-8. The spectral indices MIRBI, NBR, and NBR2
and the NIR band produced the best results for identifying burnt areas in the Peruvian Amazon.
The applied methodology showed promising results for mapping BA, revealing its feasibility to further
support the assessment of BA environmental impacts at regional, national, and global levels as well as
to subsidize measures for wildfires risk management.

Supplementary Materials: The following are available online at http://www.mdpi.com/2220-9964/9/10/564/s1,
Figure S1: Maps of wildfires burn scars proximity to the road network; (a) BA resulting from Landsat-8; (b) BA
resulting from Sentinel-2. Figure S2: Maps of wildfires burn scars superimposed on slope ranges; (a) BA resulting
from Landsat-8; (b) BA resulting from Sentinel-2. Figure S3. Maps of wildfires burn scars proximity to populated
areas; (a) BA resulting from Landsat-8; (b) BA resulting from Sentinel-2. Table S1. Scripts developed for the
classification of burnt areas (BA) in the Amazonas department. Table S2. Statistical validation of burnt areas for
the Landsat-8 product in 2017. Table S3. Statistical validation of burnt areas for the Landsat-8 product in 2018.
Table S4. Statistical validation of burnt areas for the Landsat-8 product in 2019. Table S5. Statistical validation of
burnt areas for the Sentinel-2 product in 2017. Table S6. Statistical validation of burnt areas for the Sentinel-2
product in 2018. Table S7. Statistical validation of burnt areas for the Sentinel-2 product in 2019. Table S8. Analyses
of the burnt areas’ spatial distribution with respect to slope and proximity to roads and populated areas for the
Landsat-8 and Sentinel-2 products.
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