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Abstract: Recent applications of Landsat 8 Operational Land Imager (L8/OLI) and Sentinel-2
MultiSpectral Instrument (S2/MSI) data for acquiring information about land use and land cover
(LULC) provide a new perspective in remote sensing data analysis. Jointly, these sources permit
researchers to improve operational classification and change detection, guiding better reasoning
about landscape and intrinsic processes, as deforestation and agricultural expansion. However,
the results of their applications have not yet been synthesized in order to provide coherent guidance
on the effect of their applications in different classification processes, as well as to identify promising
approaches and issues which affect classification performance. In this systematic review, we present
trends, potentialities, challenges, actual gaps, and future possibilities for the use of L8/OLI and
S2/MSI for LULC mapping and change detection. In particular, we highlight the possibility of using
medium-resolution (Landsat-like, 10–30 m) time series and multispectral optical data provided by
the harmonization between these sensors and data cube architectures for analysis-ready data that are
permeated by publicizations, open data policies, and open science principles. We also reinforce the
potential for exploring more spectral bands combinations, especially by using the three Red-edge and
the two Near Infrared and Shortwave Infrared bands of S2/MSI, to calculate vegetation indices more
sensitive to phenological variations that were less frequently applied for a long time, but have turned
on since the S2/MSI mission. Summarizing peer-reviewed papers can guide the scientific community
to the use of L8/OLI and S2/MSI data, which enable detailed knowledge on LULC mapping and
change detection in different landscapes, especially in agricultural and natural vegetation scenarios.
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1. Introduction

Land Use and Land Cover (LULC) are classical concepts and crucial information to understand
the relationship between humans and the environment [1]. Land Cover refers to the physical
characteristics of the Earth’s surface, such as vegetation, water, and soil, while Land Use refers
to the purposes for which humans exploit the Land Cover, such as changes made by anthropogenic
activities [2]. LULC changes (LULCC) refer to the dynamics of this interaction and can be represented
by humans (e.g., deforestation, urbanization, and agriculture intensification) or natural actions
(e.g., droughts, floods, and natural fires) [2]. Therefore, LULC data can support our perception of
coupled human–environment systems [3]. Nowadays, the importance of accurate LULC data has been
expanded to promote the implementation of policies related to the management of natural resources
and environmental problems, such as food security, climate change, deforestation, and agriculture
dynamics [4,5]. This reinforces the need for detailed mappings to enable sustainable development [6–8].
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Remote sensing satellite data are a valuable source to produce up-to-date LULC classifications [3],
and big Earth Observation (EO) data sets are constantly applied for getting information about LULC
and LULCC [9]. The use of Satellite Image Time Series (SITS), for example, allows a better reasoning of
the landscape and intrinsic processes such as deforestation, greenhouse gas emission, and agricultural
expansion [10]. However, LULC classification is a complex process influenced by many factors [11].
Over the last two decades, the main efforts in terms of algorithms, products, and applications have
been especially related to moderate spatial resolution instruments, such as the Moderate Resolution
Imaging Spectroradiometer (MODIS) sensor (250 × 250 m), because the data derived from this spatial
degree have become more available and easier to process [12]. Phenology metrics, for example, which
are relevant features to understand phenological cycles and to detect subtle dissimilarities among
similar classes, have been routinely generated from moderate resolution data [13].

The efforts using MODIS have achieved relevant results [14–16]. However, for many applications,
information is required at finer spatial resolutions [12]. As cited by Chen et al. [17], medium-resolution
(Landsat-like, 10–30 m) is more adequate to detect most human–nature interactions, and the low
to moderate resolution sensors are not appropriate for high-precision LULC classification research
at regional scales [18]. For detailed information on plant phenology, it is important to derive this
data from medium-resolution sensors, such as Landsat 8 Operational Land Imager (L8/OLI) and
Sentinel-2 MultiSpectral Instrument (S2/MSI) [4]. This factor has expanded the handling and analysis
of big Earth spatio-temporal datasets of multi-source data with a Landsat-like resolution [19], and the
increase in spatial resolution, free access policies, and systematic global coverage have created a
new era to improve LULC and LULCC applications [20,21]. Landsat and Sentinel represent the two
flagships for medium-resolution land imaging [22]. Since L8/OLI and S2/MSI data share many
technical characteristics [23], they represent cost-effective tools to describe landscape dynamics at
broad scales. Literature shows the importance of L8/OLI and S2/MSI data application for producing
timely and accurate maps [24,25]. However, the results have not yet been synthesized to provide
coherent guidance on their effect in LULC classification processes, and to know limitations and
promising approaches. To do so, it is necessary to synthesize the collective knowledge on this topic,
as opposed to using individual experience and expertise [26]. Recently, systematic reviews of remote
sensing applications have provided reliable synthesis and scientific guidance [19,27,28]. However,
none focused on L8/OLI and S2/MSI data for LULC classification and LULCC detection.

Therefore, the main objective of this work is to conduct a systematic review of peer-reviewed
papers published in Journal volumes from 2015, the year of the S2/MSI launch, to 2020 related
to the use of L8/OLI and S2/MSI spectral bands (bands) and spectral vegetation indices (VIs) to
map LULC and detect and monitor LULC changes. Our goal is specifically to: (1) synthesize the
current state of knowledge, aiming to identify relevant developments and applications of classification
methods concerning sensors, LULC types, classifiers, geographical regions, training sample sizes,
segmentation algorithms, and other variables; and (2) summarize scientific advances for LULC
classification and LULCC detection, and existing issues and limitations, providing scientific guidelines
and new insights for future research regarding their use.

2. Landsat 8 /OLI and Sentinel-2/MSI Characteristics

The worldwide joint use of L8/OLI and S2/MSI data as input for LULC and LULCC applications
occurs because they are: freely available [21], interoperable [29], and able to monitor large surfaces [30].
These sources are placed in sun-synchronous orbits [22] and make similar measurements in terms of
spectral, spatial, and angular characteristics (Table 1).
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Table 1. Characteristics of L8/OLI and S2/MSI sensors.

Spectral Band L8/OLI Central
Wavelengths

S2/MSI Central
Wavelengths (2A, 2B)

Coastal/Aerosol 442.9 nm (30 m) 442.7 nm (60 m), 442.2 nm (60 m)

Blue 482 nm (30 m) 492.4 nm (10 m), 492.1 nm (10 m)

Green 561.4 nm (30 m) 559.8 nm (10 m), 559 nm (10 m)

Red 654.6 nm (30 m) 664.6 nm (10 m), 664.9 nm (10 m)

Red-edge -
704.1 nm (20 m), 703.8 nm (20 m)
740.5 nm (20 m), 739.1 nm (20 m)
782.8 nm (20 m), 779.7 nm (20 m)

NIR 864.7 nm (30 m)
832.8 nm (10 m), 832.9 nm (20 m)
864.7 nm (20 m), 864.0 nm (20 m)

SWIR
1608.9 nm (30 m)
2200.7 nm (30 m)

1613.7 nm (20 m), 1610.4 nm (20 m)
2202.4 nm (20 m), 2185.7 nm (20 m)

Panchromatic 589.5 nm (15 m) -

Cirrus 1373.4 nm (30 m) 1373.5 nm (60 m), 1376.9 nm (60 m)

Water vapor - 945.1 nm (60 m), 943.2 nm (60 m)

Source: ESA [31] and NASA [32].

L8, launched by National Aeronautics and Space Administration (NASA) and United States
Geological Survey (USGS), has two sensors: Operational Land Imager (OLI) (30 m of spatial resolution
and nine bands) and Thermal InfraRed Sensor (TIRS) (100 m of spatial resolution and two bands) [22].
The temporal resolution is 16 days and the radiometric resolution is 16 bits. The area covered by each
scene is 185 × 180 km [30]. S2/MSI is a mission with two satellites (S2A/MSI and S2B/MSI launched
by the European Union’s Copernicus Earth Observation program of Europe Space Agency (ESA) in
2015 and 2017, respectively) [22]. Both S2 satellites carry the MultiSpectral Instrument (MSI), a sensor
containing 13 bands and spatial resolution varying between 10 and 60 m at visible to shortwave
infrared (SWIR) regions [33]. The S2/MSI mission provides data with a 5-day revisit frequency, 16 bits
of radiometric resolution, and swath width of 290 km [30,31]. Because of their spectral capabilities
(including three bands in the Red-edge and two bands in the SWIR), S2/MSI mission provides new
mapping possibilities [33–35]. These bands can be considered more linked to vegetation analysis
than L8/OLI bands because this wavelength range is sensitive to chlorophyll content, and highly
variable among different crops and different phenological states [36,37], which can be useful to derive
band ratios and to calculate a wide variety of indices, useful for vegetation discrimination and LULC
classification [38–40]. For LULC and LULCC analysis, these benefits can provide more accurate
results as opposed to Landsat data which have presented shortcomings from their spatial and spectral
resolutions and cloud cover interference due to its 16-day revisit interval [36].

The integration between L8/OLI and S2/MSI data provides a global average revisit interval of
about 3 days [12], which allows surface monitoring with cloud-free observations in some regions [41],
and the development of agricultural products at medium spatial resolution [28,42]. With the
Landsat 9, the virtual constellation will become even more frequent approaching a 2-day revisit
cycle [43]. This enables the development of methods considering different temporal and spatial
resolutions to derive biophysical vegetation parameters and the spectral unmixing of sub-pixel
fractions, which permits mapping dynamic processes at sub-hectare resolution [29].

3. Background

Systematic reviews were recently conducted concerning techniques for LULC and LULCC
analysis. See et al. [44] discussed the need for the provision of spatially explicit cropland datasets
at a global scale and reviewed the strengths and weaknesses of the various approaches used to
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develop such data. Belgiu and Drăgut [45] discussed the most used techniques for LULC classification
at a regional or global level. Gómez et al. [1] presented issues and opportunities associated with
the use of SITS of large-area products for LULC characterization. Khatami et al. [11] provided
guidance on the performance of different supervised pixel-based image classification processes,
involving algorithms and input data. Maxwell et al. [46] analyzed machine learning implementation
in LULC classification models, focusing on algorithms, training data requirements, user-defined
parameters, and computational costs. Wulder et al. [47] revisited the status of LULC classification with
EO data to explain the new era of LULC analysis (Land Cover 2.0) enabled through free and open
access data, analysis-ready data (ARD), and high-performance computing. Pandey et al. [48] analyzed
the different EO platforms and datasets, spatial-spectral-temporal characteristics of satellite data,
and approaches applied in LULC classification and change detection, providing recommendations
to generate accurate maps. Sudmanns et al. [49] discussed the challenges from the uptake of big EO
data, describing the challenges to generate consistent and systematic global information, and pointing
out to the importance of web-based workflows. Whitcraft et al. [8] presented current and potential
uses of EO data to support sustainable and social policies in the agricultural and food security
contexts, highlighting activities of the Group on Earth Observations Global Agricultural Monitoring
(GEOGLAM) Initiative. Weiss et al. [50] presented an overview of the recent techniques for providing
operational services for agricultural applications. Yu et al. [51] presented guidance in the use of big EO
data for accurate spatiotemporal event detection. Zeng et al. [28] summarized emerging methods based
on SITS analysis for phenology detection, detailing applications to detect and estimate general and
species-specific phenological stages. Phiri et al. [52] evaluated the inclusion of S2/MSI data for LULC
monitoring with traditional classification methods. Despite these reviews, the knowledge of using
L8/OLI and S2/MSI, showing trends, gaps, and future possibilities in the face of modern concepts,
methods, and technologies, has not yet been summarized.

4. Material and Methods

We did a review of papers published in specialized Journals from 2015 to 2020,
checking algorithms, classes, samples, overall accuracies (OA), and others. Some classical references
of concepts, and the reference of VIs were incorporated. Our information sources were the following
databases: AGORA (FAO); Current Contents–Physical Chemical & Earth Sciences (Clarivate Analytics);
DBLP Computer Science Bibliography (Universität Trier); DOAJ—Directory of Open Access Journals;
Ei Compendex/Engineering Village (Elsevier); Genamics JournalSeek; HINARI (WHO); Inspec (IET);
Journal Citation Reports/Science Edition (Clarivate Analytics); Science Citation Index Expanded—Web
of Science (Clarivate Analytics); Scopus (Elsevier), and Web of Science (Clarivate Analytics).

In order to perform the protocol and registration to integrate the papers, linking sources,
eligibility criteria, selection, and data collection, we adopted the “Preferred Reporting Items for
Systematic reviews and Meta-analyses” (PRISMA) [53] and the “Protocol, Search, Appraisal, Synthesis,
Analysis, Research Protocol, and Reporting results” (PSALSAR) [54] methods. The search strategy
involved the determination of hierarchical topics to guide the selection of papers. We organized
them in the Mendeley platform (https://www.mendeley.com/) considering the following topics:
“Land use and land cover mapping”, “Sentinel-2 and Landsat 8 time series”, “Pixel- and Object-based
image analysis with Sentinel-2 and Landsat 8”, “Landsat 8 and Sentinel-2 integration”, “Red-edge and
SWIR-associated vegetation indices”, “Random Forest (RF)”, and “Support Vector Machine (SVM)”.
We designed a schematic process based on Ma et al. [26] to filter, select, and organize the papers
(Table 2).

https://www.mendeley.com/
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Table 2. Schematic process to filter, select, and organize the papers.

Fields Definition Categories

Year Year of publication Year

Source title Journal Journal name

Institution Name Institution Name

Area Mapped area Country, area of interest

Sensor type Sensor used S2/MSI, L8/OLI, both

Sampling strategy Sampling adopted
Stratified random sampling,

simple random sampling, others

Site type Study area Agricultural lands, Natural vegetation

Classification method Method adopted RF, SVM, others

Accuracy measure Accuracy index and values OA, Kappa, F-score, and % of accuracy

Source: Adapted from Ma et al. [26].

We selected the papers according to their scope and objectives, and characteristics such as the
geographic area mapped, sampling strategy, number of samples and classes, classification method,
and accuracy. We especially selected papers of the agricultural or natural vegetation domain because
of their dynamics and heterogeneity, favoring innovative and reproducible methods that permit
the reasoning about landscape dynamics, considering the capability to distinguish different classes.
We previously selected 989 papers, and we included 193 of them in this systematic review (Figure 1).

Figure 1. Schematic process to select the papers from 2015 to 2020 presented in this systematic review.

Based on Bajocco et al. [55], a text mining analysis through term network extraction using the
VOSviewer software was performed on 193 recent papers to analyze the evolution of the research
fields in the evaluated period. Including classical references, we cited 221 papers and 2 web sites.

5. Results and Discussion

The 193 recent papers from 2015 to 2020 were developed by research groups of 35 countries
(Figure 2), according to the affiliation of the principal author. Those with over 10 publications include,
respectively, USA ( 43), China ( 24), Germany (20), France (13), and Brazil (12).
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Figure 2. Global distribution of the research groups responsible for the papers selected, highlighting the
15 countries with the greatest number of publications.

The main sources of the 221 peer-reviewed publications were the journals: Remote Sensing of
Environment ( 58 papers), Remote Sensing ( 48 papers), and ISPRS Journal of Photogrammetry and
Remote Sensing (16 papers). The top 15 journals are presented in Figure 3.

Figure 3. Top 15 journals where the selected papers were published.

We noted the prevalence of SITS, multi-temporal analysis, and two principal classification
approaches: (a) Pixel-based, by using SITS for monitoring pixel trajectories along the time, and (b)
Object-based, by the geographic object-based image analysis (GEOBIA), evaluating pixel neighborhood
relations for segmentation and classification, which are often used in conjunction with robust machine
learning algorithms. We observed the growing use of phenological metrics and deep learning methods.
The text mining analysis highlighted the occurrence and link strength of each term (Figure 4).
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Figure 4. Scientific network mapping of the most used keywords terms in the selected papers.
Colors indicate the cluster in which each keyword was related the most. Lines represent co-occurrence
link strength among terms.

The network reveals a high connection among relevant and different features, techniques,
and methods used as a strategy to address LULC-related purposes. The strength of the connections
reinforces the association of ’land use’, ’land cover’, and ’land use change’ with ’machine
learning’ techniques, ’time series analysis’, and object-based (’OBIA’, ’GEOBIA’, ’segmentation’)
approaches, as well as ’surface reflectance’, ’big data’, ’data fusion’ (’analysis-ready data’, ’data cube’),
’vegetation indices’, and ’data mining’ for ’image classification’. By text mining, it was also was
possible to detect the evolution of the research terms occurrence throughout the period of analysis
(Figure 5).
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Figure 5. Scientific network mapping of the papers’ keywords. Colors indicate the year in which each
keyword was more used. Lines represent co-occurrence link strength among terms.

The temporal analysis of the research terms occurrence in the network reveals the consolidation
of target covers (’agriculture’, ’grassland’, ’deforestation’) and the connection increase among different
features, techniques, and methods for LULC classification (i.e., the link among ’vegetation indices’,
’time series analysis’, ’cloud computing’). The connections reinforce innovative approaches with
the association of ’red-edge’ and ’land surface phenology’ with ’machine learning’ techniques,
’satellite image time series’ and object-based (’OBIA’, ’GEOBIA’, ’segmentation’) approaches, and the
integrated use of ’surface reflectance’, ’analysis-ready data’, ’data cube’, ’vegetation indices’,
and metrics related to ’phenology’. Considering the dynamism of the highlighted target covers
and the robustness of the features, techniques, and methods applied, it is reasonable to think that
study areas pertaining to countries with a heterogeneous landscape are more explored to conduct the
applications (Figure 6). Prevalent countries were marked by high dynamic activities (i.e., agriculture,
deforestation, and urban expansion) with a heterogeneous gradient of vegetation types, which are
attractive for LULC and LULCC-related purposes. In addition, the presence of developing countries
is a reflex of the support to the national reporting capacities for the Sustainable Development Goal,
from the publicization and open data policy to use remote sensing data.
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Figure 6. Global distribution of the study areas considered for applications in the selected papers,
highlighting the 15 countries with the greatest number of publications.

These papers were summarized to provide knowledge on the consolidated L8/OLI and S2/MSI
data application, discussing gaps, challenges, and suggesting future directions with examples.

5.1. Consolidated Trends

After the launch of L8/OLI and S2/MSI, an increasing trend in the medium-resolution SITS
exploitation for LULC classification was detected [56]. In theory, every month S2/MSI can provide three
observations and L8/OLI two, providing five monthly medium resolution observations, benefiting
the monitoring of abrupt changes [21]. This higher temporal resolution of global observations
enabled the concept of dense SITS for surface monitoring [25], which increased the use of cloud
computing platforms (i.e., Amazon Web Services—AWS and Google Earth Engine—GEE) to process
big EO data [49,57]. Due to flexibility, efficiency, and availability of with cloud-based processing,
these platforms optimized the on-demand data access, bulk downloading, ingesting, and processing
capabilities [58]. They also approximated the pixel- and object-based approaches for LULC mapping
at different geographical scales, by encompassing segmentation and classification techniques [50,59].
Critical reviews discussed the integration between these approaches [1,26,60].

5.1.1. SITS and Pixel-Based Approaches

Dense SITS derived from big EO medium-resolution data have been used to improve LULC
classifications, since they permit the detection of phenological variation over specific periods, such as
growing seasons [5,61,62]. Being suitable to deal with the crop dynamics [63] and the heterogeneity
of natural areas [64], the SITS analysis can potentialize the use of VI information as input in LULC
classification methods, improving the separability of classes [5]. In addition, considering LULCC as
a dynamic process, without guarantee of spatial-coherence along the time, SITS are used to detect
specific changes by analyzing pixel reflectance trajectories [9,65]. The effectiveness of SITS analysis
needs to address the gap of training sample data, which can be overcome by using reference data
from the past, and low and irregular temporal availability of satellite images caused by a high
presence of clouds, and the variability of pseudo periodic phenomena (e.g., vegetation cycles) [10].
Since more medium-resolution datasets have become available, the above-mentioned data problem
can be addressed [35]. Several papers have pointed out the importance of the pixel-based approach,
using L8/OLI and S2/MSI data as input in classification models to provide accurate LULC maps.
Liu et al. [66] integrated L8/OLI and S2/MSI SITS using the GEE platform for mapping crop types
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at a 30-m spatial resolution over seven regions of China in the 2016–2017 harvest season, achieving
an OA of 93%. In addition, integrating L8/OLI and S2/MSI on GEE, Xiong et al. [67] developed
an approach for cropland mapping in Africa, in 2015–2016, using an object-based segmentation and
selecting training samples to create pixel-based classifications. Using RF and SVM algorithms, the OA
was equal to 94% mapping croplands. Piedelobo et al. [30] explored integrated L8/OLI and S2/MSI
SITS for crop classification in the Duero river basin, Spain, for the 2017 spring and summer seasons,
achieving an OA equal to 87% and 92% when classifying 15 crop types individually and grouped,
respectively.

Other approaches have emerged. Combining S2/MSI pixel- and object-based SITS as input
in RF and Time-Weighted Dynamic Time Warping (TWDTW) algorithms, Belgiu and Csillik [65]
classified seven crop types in study areas in Romania, Italy, and in the USA. The pixel-based RF
obtained an OA between 87% and 97%, and the object-based TWDTW obtained an OA between
78% and 96%. Using phenological metrics derived from dense Landsat EVI SITS in a pixel-based
approach, Bendini et al. [68] classified croplands in the Cerrado biome, Brazil, between 2013 and
2017, using RF and a hierarchical classification model from land cover to 16 crop rotation classes,
getting accuracies higher than 90%. Sharma et al. [69] proposed a patch-based Convolutional Neural
Network (CNN) for L8/OLI data considering the spatial relation between a pixel and its neighborhood,
and patch-based samples from multidimensional data. The method outperformed pixel-based neural
network, pixel-based CNN, and patch-based neural network OAs by 24.36%, 24.23%, and 11.52%,
respectively, considering eight LULC classes. Using SITS for monitoring phenological stages, Nasrallah
et al. [70] mapped winter wheat areas up to six weeks before harvest in Lebanon, in 2016 and 2017.
The OA was 87.0% in 2017, distinguishing wheat from similar winter cereal crops. Other papers
were developed by using pixel-based approaches [18,71,72], remarking their potential for monitoring
heterogeneous landscapes.

5.1.2. SITS and Geographical Object-Based Approaches

The geographic object-based image analysis (GEOBIA) expands the analysis over the pixel
reflectance information, segmenting features; dividing images in geo-objects selected by shape,
compactness, and texture; collecting samples; and performing classifications using geo-objects as
a basic unit of analysis [73]. GEOBIA minimizes the within-class spectral variability by assigning
all pixels in the object to an identical LULC class, exploring the spatial information implicit within
orbital images, and integrating contextual and semantic relationships among geo-objects [60]. With the
rise of Landsat-like application, the object-based approach performed better than the pixel-based one
in urban [74], agricultural [26,65], and natural areas [75], mitigating granular effects and improving
the change detection [61,76]. However, this approach remains rarely employed to analyze SITS
data [75]. In the agricultural context, for example, despite the advantages to delineate crop fields,
the implementation of object-based frameworks for the spatio-temporal analysis of medium-resolution
imagery is limited [77]. The major difficulty is the alignment of objects along the time because of
the agricultural landscape dynamics, which do not necessarily improve crop classification by using
object-based methods [76].

Nevertheless, some alternatives were developed using the object-based approach and SITS.
Petitjean et al. [10] proposed the enrichment of pixel SITS with contextual features, strengthening the
connection among pixels from the same segment. Toure et al. [74] showed the suitability of a geographic
object-based image change analysis (GEOBICA) with L8/OLI and S2/MSI images for detecting urban
changes. Khiali et al. [78] developed an object-oriented method to analyze L8/OLI SITS, identifying and
grouping spatio-temporal entities that evolve similarly. They highlighted that combining GEOBIA,
VIs, and bands allows for discriminating similar spatio-temporal phenomena better than using only
pixel’s reflectance and bands. Watkins and van Niekerk [79] attested the potential of object-based
approaches to delineate crop field boundaries in multi-temporal S2/MSI data to improve crop mapping
in a heterogeneous landscape. Graesser and Ramankutty [80] illustrated how Landsat object edges
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and VIs SITS can improve cropland mapping in South America, presenting low geometric errors of
crop field estimates. Yin et al. [81] integrated temporal and spatial segmentation of Landsat SITS to
generate agricultural objects, aiming to improve the land abandonment detection in the Caucasus
region. The change detection using geo-objects achieved an OA equal to 97% for mapping six classes,
performing better than pixel-level change detection (82%). Shang et al. [82] compared object- and
pixel-based approaches to map 15 LULC classes in Beijing, China, using L8/OLI data to explore
the influence of repeated sampling on classifications considering different training sample sizes.
The object-based approach performed better, and repeated sampling led to increasing accuracies.
Sánchez-Espinosa and Schröder [36] integrated L8/OLI and S2/MSI data and applied an object-based
classification method to improve the separability of 12 LULC classes in Andalucia, Spain, achieving an
OA equal to 88%.

5.1.3. Conventional Spectral Bands and VIs

Combining bands and VIs provide accurate LULC classification and LULCC detection
results [19,71,83]. Among L8/OLI and S2/MSI bands, Green, Red, and Red-edge are useful
because they correlate with chlorophyll and other pigments, NIR bands are useful to determine
leaf structure information, while SWIR is sensitive to water content in vegetation and vegetation
structure [38,84,85]. Of these bands, Red, Green, and NIR bands are the conventional ones for VI
calculation [86]. VIs are indicators of photosynthetic activity and vegetative vigor which are used to
assess variations in the physiological states and biophysical properties of vegetation, mainly through
SITS analysis [86]. Nowadays, several applications comprise the use of VI-based approaches for
assessing the heterogeneous and continuous nature of the land cover composition and change
processes [87].

We observed that the use of VIs derived from open data, before the large availability of S2/MSI
data, often focused on the reflectance of visible and NIR: (1) Normalized Difference Vegetation
Index (NDVI) [88], a chlorophyll sensitive index sufficiently stable to compare seasonal changes in
vegetation growth [89], (2) Soil-Adjusted Vegetation Index (SAVI) [90] that minimizes soil brightness
influences with a correction factor in the NDVI formula [89], (3) Enhanced Vegetation Index (EVI) [89],
with corrections for atmospheric noise, which permits less-saturation of high biomass [91], and (4)
Normalized Difference Water Index (NDWI) [92], useful to measure vegetation water status [93].
The predominance of these VIs is justified by their functionality and presence of compound bands in
many sensors [40,86]. Variations were formulated to reduce problems. The Green NDVI (GNDVI) [94]
introduced more sensitivity to chlorophyll-a content than that of the NDVI, making it useful to detect
stressed and senescent vegetation as well as to estimate green crop [95]. Different SAVI-derived
VIs were created to mitigate soil background effects in the reflectance signal during the green-up
phenological phase, as the Modified SAVI (MSAVI) [96], and the Optimized SAVI (OSAVI) [97].
The EVI-2 [98] was proposed to reduce the influence of soil reflectance on the EVI. For water detection,
the NDWI using Green and NIR [99], and the Modified NDWI (MNDWI) [100], were developed.

Conventional VIs remain widely applied with L8/OLI and S2/MSI bands. Parente et al. [101]
classified pasturelands in Brazil using only L8/OLI NDVI into an RF algorithm, obtaining an OA
equal to 87% separating this class. Teluguntla et al. [72] developed a cropland classification for
Australia and China, using NDVI and bands of L8/OLI into an RF algorithm, achieving a coefficient
of determination of 0.85. Huang et al. [18] integrated NDVI SITS and textural features from S2/MSI
to perform LULC classification in cloud prone areas of Thailand, using RF. The OA reached 89%
classifying seven classes, highlighting forests and increasing the separability between crops and other
vegetation types. Skakun et al. [42] integrated L8/OLI and S2/MSI for winter crop mapping and
winter wheat assessment at a regional scale, considering NDVI SITS and crop calendar, achieving an
OA equal to 90% separating winter crops. Palchowdhuri et al. [102] attested the relevance of NDVI,
GNDVI, and SAVI in a multi-temporal crop type classification in Coalville, United Kingdom using RF
and decision tree algorithms, with an OA equal to 91% classifying 16 classes. Mapping eight crop types
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in the Yellow River Delta, between 1985 and 2015, using NDVI, SAVI, MNDWI, and textural features
from multi-temporal Landsat data and RF classifier, Feng et al. [6] obtained an average OA equal to
89%. Sonobe et al. [103] used L8/OLI bands and conventional VIs (including NDVI, EVI, and SAVI)
to classify six crop types in Hokkaido, Japan, achieving an OA equal to 94.5%. Zhong et al. [104]
obtained relevant results using EVI SITS to classify summer crops in California using deep learning
algorithms. Despite these results, most of the conventional VIs associated with Red and NIR regions of
the electromagnetic spectrum commonly saturate at moderate to dense canopies [37,58].

5.1.4. Landsat 8 and Sentinel-2 Data Integration

In an era marked by improvements in methods for LULC and LULCC analysis, the aggregation
of spectral features is a trend to be further explored because integrating multispectral sensors’ data
improves monitoring effectiveness [105]. The use of multi-source data is a current need, especially to
detect crop dynamics [19], and the L8/OLI and S2/MSI are useful not only for characterizing land
use across large areas but also for promoting monitoring at crop field level over large areas [33].
Integration techniques have been used to improve the spatial resolution of SITS data sets needed
for phenological characterization [28]. The integration between L8/OLI and S2/MSI data is a recent
trend [22,106,107], and has been applied to develop dense SITS for improving temporal resolution and
LULC classification approaches [108,109]. The open access to L8/OLI and S2/MSI data, the similar
wavelengths, and the same geographic coordinate system provide an excellent opportunity to integrate
these data to produce SITS with a consistent spatial resolution for continuous global monitoring,
enabling the mapping of cloud prone areas and the downscaling of the observed 30 m L8/OLI data to
10 m [21].

The Harmonized Landsat Sentinel-2 (HLS) product, which integrates L8/OLI and S2/MSI data
inputs into a unique consistent dataset with higher temporal frequency (2–4 days) and a standardized
30 m spatial resolution, has focused on the necessary radiometric and geometric corrections to
generate a seamless surface reflectance product, based on methods for atmospheric correction,
cloud/shadow screening, geometric resampling, geographic registration, corrections for bandpass
difference, and bidirectional reflectance distribution function (BRDF) effects [22,106]. However,
technical challenges still remain. Pixel-level co-registration between L8/OLI and S2/MSI have
been challenging and approaches to register the data and to provide atmospheric corrections, cloud,
and cloud shadow masking algorithms are being developed for both sensors [42,56,77]. The differing
swath width and orbit tracks result in sun- and view-angle variability, causing non-negligible
reflectance variations for certain applications [110]. There may be substantial regional variation
implicit in such adjustments, which should be considered when applied regionally [111]. Despite this
issue, HLS products have been recently used for different applications. On the national-scale
across Germany, its quality was attested to classify vegetation classes and to map the frequency
of grassland mowing events, respectively, showing the value of multi-sensor SITS for characterizing
LULCC intensity across large areas [107,112]. Zhou et al. [113] also assessed the potential of HLS to
characterize grasslands, observing its high sensitivity at the start of the growing season. Pastick et al.
[105] monitored land-surface phenology in drylands using a regression tree modeling framework to
integrate information of HLS products. They characterized seasonal variations with a substantial
agreement between observed and predicted values (R2 0.98), showing enhanced monitoring capabilities
derived from HLS data. Classifying crop types in the USA, Torbick et al. [114] attested the ability
of HLS products to improve information about crop location and extent within the crop season,
achieving accuracies of above 85%. Hao et al. [115] evaluated HLS products to map single- and
double-crop in study areas of the USA, South Africa, India, and China, achieving OAs higher than 95%
with 15-day harmonized NDVI and EVI SITS.

Other projects are advancing in L8/OLI and S2/MSI data integration. Frantz [116] developed
the FORCE (Framework for Operational Radiometric Correction for Environmental monitoring) for
the mass-processing and analysis of Landsat and S2/MSI images, generating highly ARD (hARD)
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and products with cloud masking, radiometric and topographic or BRDF correction, aiming to solve
spatio-temporal inconsistencies caused by cloud cover. The European Space Agency (ESA) funded
two programs: Sen2like [117] and Sentinel-2 for Agriculture (Sen2-Agri) [118], to develop open-source
systems based on SITS analysis methods for crop mapping and monitoring, which can be globally
applied. Providing harmonized L8/OLI and S2/MSI ARD, Sen2-Agri aims to address crop monitoring
needs and to support national reports for the “Sustainable Development Goal 2—Zero Hunger”
(SDG-2) and the GEOGLAM initiative [119]. Sen2like aims to increase the acquisitions of this virtual
constellation (95 products/year) by 30% to S2/MSI only acquisitions, promoting dense SITS [117].
Tian et al. [120] developed a phenology-based algorithm integrating S2/MSI, Landsat 7, and L8/OLI
NDVI SITS to classify winter crops in China. The approach filled gaps derived from cloud interference
and reduced differences in winter crop phenologies, demonstrating that it is unnecessary to use images
of the total length of the cycles. The OA was 89%. Feng et al. [121] proposed a CNN for integrating
multi-temporal and multi-sensor data to improve coastal LULC classifications. Results with an OA
equal to 93.78% when mapping 11 LULC classes showed that including multi-temporal data improves
accuracy by 6.85%, while multi-sensor data contribute to 3.24% of the increase.

Methods to calibrate reflectance differences between L8/OLI and S2/MSI are in
development [22,118,122,123]. In addition, the processing system baselines and surface reflectance
approach for both data sets, in particular, the more recent S2/MSI data [33], have frequently changed,
and novel algorithms are being developed to mitigate these issues [43]. Projects such as HLS,
FORCE, Sen2-Agri, and Sen2like are in development, but they can already can provide robust
medium-resolution data to be used in LULC and LULCC approaches, endorsing that, since both
L8/OLI and S2/MSI provide precision information, they should coexist and be used jointly to increase
data availability [36].

5.2. Gaps and Challenges

The harmonized use of L8/OLI and S2/MSI has helped to correct historical gaps and uncertainties
in LULC analysis [28]; for example, the long interval between two valid observations of the same
point and the LULC mixing in the pixels lying on change boundaries [124]. However, three crucial
gaps still limit LULC classification in heterogeneous and large landscapes: (i) the scarcity of field
samples to train classifiers, (ii) the big data processing, and (iii) the difficulty to standardize both
L8/OLI and S2/MSI. In addition, the accuracy of LULC classification and LULCC detection still
depends on the performances of the classification methods [50]. Different results demonstrate that, by
addressing or mitigating the above-mentioned crucial gaps, the classifiers can perform classification
tasks, which makes this problem more manageable.

5.2.1. The Gap of Representative Samples

The growing volume and availability of remote sensing data allows the multi-dimensional analysis
to generate LULC classification. However, even with medium-resolution data, performing classification
with high accuracy, especially for vegetation analysis, depends on the quality, quantity, and the
temporal continuity of the training set [61,125]. As large-scale mapping approaches rapidly advance,
addressing landscape heterogeneities without causing distortions and biases on accuracy poses a
challenge. This topic is highly quoted, and discussions have concluded that representative sample
datasets make all the difference in the improvement of classifications by different methods [126].
Therefore, the training dataset composition remains an issue, especially in heterogeneous areas with
scarce data [127]. Different authors discussed the impact of the low availability of representative
samples to perform accurate LULC classification. Waldner et al. [128] showed that the LULC
classification performance is more dependent on the cropping systems data than on the classification
method. Considering that agricultural landscapes with similar crop cover composition have similar
phenological development, the sampling strategy is crucial to obtain representative landscape samples.
Incorporating more spectral features is important. However, that alone does not help the classifier, so it
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becomes interesting to stratify training samples according to the different targets [71]. This represents
that not only the absence of samples to train the algorithm, but also the absence of representative
samples for each class can be detrimental to classification results [129].

Training samples are usually collected from field surveys that follow statistical and spatial
guidelines to determine the data acquisition [3,33,83,130,131]. Seeing the challenges and the importance
of this process in the classification model performance, Fowler et al. [132] developed a tool to guide
data collection considering a normalized Moran’s I index as a useful indicator for choosing the survey
route, and the most important fields to survey on that route. However, field surveys involve highly
associated costs, in terms of money and time, not to mention that visual interpretation can be difficult
when images or photos are not available, which may cause biases [125,132]. An alternative is the
use of unsupervised classification methods [133]. These methods are often vulnerable to outliers,
high dimensionality, and noisy features, and require the user to input unknown information about the
data. However, their advantage is the ability to create crop type maps where little to no field-level
ground data exists [13]. Other effective options include deriving training samples from existing LULC
products [134,135], repeating sampling and data augmentation to expand the training sample [82] ,
clustering methods to assess samples [16], and using expert knowledge through visual interpretation
of other products, such as high-resolution images from Google Earth and aerial photographs [17].

5.2.2. Challenges to Deal with Big Data and Landsat-Sentinel’s Data Integration

The term ‘big Earth data’ emerged to describe massive EO datasets that confront analysts and
their traditional workflows with a range of challenges [49]. The use of L8/OLI and S2/MSI for
providing large-scale LULC classification requires a big dataset of EO data, with the processing of a
significant number of orbital images, in which a complex computational infrastructure is needed to
store, manage, and process the data [136]. The needs of processing capacity, file storage, and work
time represent difficulties when working with long SITS and large study areas [36]. Understanding
this and stimulating science users to ‘bring their application to the data’ prompt, many initiatives to
build high-performance computing systems that host large satellite data collections to enable large
volume processing [47], as the Australian Geoscience Data Cube [137], the Swiss Data Cube [57], and
the Brazil Data Cube (http://brazildatacube.org/pt/pagina-inicial-2/). The Committee on Earth
Observation Satellites (CEOS) also suggests portable open-access data cube architectures to facilitate
the use of EO data and to share knowledge [47]. Alternatively, optimal dates based on crop calendars
can reduce the data volume for mapping LULC classes with marked seasonality [138]. However, this
depends on the data availability and may fail when images of key crop developmental stages of the
crops are not available [34,139].

For the first time, the applied science community has had access to systematic and near-daily
medium-resolution optical data [114]. Using data provided by different sensors can improve
the temporal resolution of SITS, fill data gaps, and improve the quality of the Earth’s surface
monitoring [140]. However, how to effectively integrate the information provided by different sensors
remains an unsolved problem in the science of remote sensing [141], due to different spectral or
spatial sensor characteristics, acquisition geometries or illumination conditions, or atmospheric
state [142], leading to inconsistencies in products derived from multi-sensor approaches [140].
This issue requires the development of new ways to extract landscape information from big EO
data sets [136]. Researchers have been engaged in finding ways to use S2/MSI and Landsat data
together. One promising source for driving the next-generation of products is the L8/OLI and
S2/MSI harmonization [114], and some groups lead this task [7]. The NASA Multi-source Land
Imaging (MuSLI) program has supported land science products in diverse areas, including burned
area mapping, forest phenology studies, and fractional water characterization [114]. Similar work
is underway in Europe through ESA, Copernicus services, and national monitoring activities
complemented by the NASA/USGS Landsat Calibration Team and the ESA S2 Validation Team [118].
Often, the harmonization approach has five steps: (1) grid imagery to a common pixel resolution,
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projection, and spatial extent (tile); (2) atmospheric correction; (3) cloud mask; (4) adjustments to
represent the response from a common spectral bandpass and nadir BRDF-normalization keying off a
single, global and constant BRDF shape [110,142]; (5) performance of geographic co-registration to
warp and co-register data [22,116,140]. In recent experiments, harmonized data are being re-projected
and data cubed [116,140]. However, a variety of technical challenges remain without a consensus
approach, concerning co-registration, atmospheric correction, cloud, and shadow masking [56],
sun- and view-angle variability, reflectance differences calibration [22,123], and the processing baselines
and surface reflectance approach for both datasets.

5.3. Trends to Be Further Explored

Emerging opportunities have the potential to further advance LULC and LULCC analysis
(Figure 7). The dissemination of open science principles can favor the sharing of sample datasets,
including in situ samples [44], a common practice that leads to progress in other scientific areas
such as medicine. The publication of in situ sample datasets in open repositories as GitHub (https:
//github.com/), Pangaea (https://www.pangaea.de), or Zenodo (https://zenodo.org/), for example,
has been growing, and the data can allow more accurate classifications [7,16,107]. This is part of
the “Land Cover 2.0 era” described by Wulder et al. [47], where the transparency on the input data,
algorithms, and the adoption, implementation, and communication of rigorous accuracy assessment
protocols are reinforced.

Figure 7. Scientific network mapping of the most used keywords in papers focusing on future
possibilities in LULC and LULCC analysis. Colors indicate the cluster in which each keyword was
more related. Lines represent co-occurrence link strength among terms.

https://github.com/
https://github.com/
https://www.pangaea.de
https://zenodo.org/


Remote Sens. 2020, 12, 3062 16 of 39

Currently, in situ data are not always available. In addition, in a long-term multi-temporal
analysis approach, it is difficult to have samples for each year of interest [124,125]. Various approaches
have been used to overcome the gap of training samples, such as semi-supervised learning or active
learning. However, they depend on preexisting labeled samples which require user expertise [125].
Especially for the agricultural sector, knowing crop distribution is useful for management and planning
decisions. The choice of a sample during the data collection step impacts on a model’s performance,
but it is usually made via roadside surveys throughout the study area [132]. This becomes important
when exploring ways to obtain representative training samples, and the open data policy with data
sharing can address it. Consequently, it can boost the use of less frequent VIs, phenological metrics,
hierarchical classifications, harmonized L8/OLI-S2/MSI data, environmental variables, and other
strategies that deal with classification problems [71,126,129].

5.3.1. Less Frequently Used Spectral Bands and VIs

Despite the advantages derived from the integrated use of L8/OLI and S2/MSI, large data volume
and different characteristics of recent sensors introduce substantial challenges to store, to develop
classification approaches, and to improve the reasoning about LULC dynamics [12], suggesting
that we should explore innovative perspectives of analysis. An emerging trend, as an alternative,
is to expand the exploitation of the electromagnetic spectrum. It is reasonable to suppose that better
classification accuracies can be achieved if all bands throughout the SITS are used as features, instead of
a greenness-related spectral index formulated from only two bands per image [71] because the full
optical spectrum comprises wavelengths which are sensitive to vegetation properties other than
greenness [62].

A common practice is the use of bands beyond the visible and NIR as input for LULC classification
approaches. However, it was restricted to a few research groups for a long time due to costs
associated with image acquisitions, storage and access, and the required specialized skills and
software to transform imagery into actionable information [57,143]. In recent years, the exploring of
the electromagnetic spectrum by the broader science community has expanded with the advent of
Earth Observation missions characterized by global coverage and medium spatial resolution data,
especially Landsat-like (10–30 m) missions, as the L8/OLI and the S2/MSI, which jointly have provided
global diffusion of narrow and sensitive spectral bands within this range of spatial resolution [28,40].
The most highlighted bands in L8/OLI and S2/MSI are the SWIR and Red-edge, and VIs based on
them have increased classification accuracies in different landscapes around the world [85,127,144].
Most of these VIs were little explored for a long time [40] but turned on only after the S2/MSI mission
advent. Vuolo et al. [145] attested the value of S2/MSI multi-temporal data for crop type classification,
analyzing nine crop types in Austria using and RF algorithm, getting an OA equal to 96% in 2016
and 2017. Sonobe et al. [40] evaluated 82 VIs calculated from S2/MSI data to identify six crop types
using RF and SVM, recommending the application of less frequently used VIs with an OA higher
than 89%. Immitzer et al. [146] observed the importance of S2/MSI’s SWIR and Red-edge bands
to classify vegetation species and crops by using the RF algorithm. Ramoelo et al. [147] verified
that combining S2/MSI’s SWIR and the first Red-edge (band 5) achieved the highest importance
for mapping the African Savannah. Macintyre et al. [148] identified SWIR and first Red-edge as the
most informative S2/MSI bands for vegetation classification in Australia. Persson et al. [149] used
multi-temporal S2/MSI data to classify five tree species in Sweden with RF, highlighting Red-edge and
SWIR to detect phenological differences, with an OA equal to 88.2%. Sothe et al. [150] evaluated the
performance of L8/OLI and S2/MSI data to map successional forest stages in the Atlantic rainforest,
Brazil, with SVM and RF, and considered that Red-edge and SWIR bands were decisive attributes to
differentiate similar phenologies. Abdi [151] highlighted the importance of Red-edge and SWIR of
S2/MSI to map boreal landscapes.
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Influenced by plant constituents such as pigments, leaf water, and biochemical components,
SWIR bands have been used as a foliar water content indicator [62]; to detect drought stress,
and to identify forest disturbances [84]. Nevertheless, the most published VIs based on SWIR have
been little applied for LULC classification [152], although, when used, they presented good results.
Jakimow et al. [153] integrated different SWIR VIs, such as Normalized Difference Moisture Index
(NDMI) [154], Normalized Burn Ratio (NBR) [155], and NBR-2 [155], with NDVI, EVI, and SAVI in
an RF model to monitor pasturelands in the Brazilian Amazon using Landsat time series. SWIR VIs
improved the detection of burned pastures, burned secondary regrowth, and tilled pastures. Müller
et al. [156] extracted metrics from Landsat NDVI time series and developed a Short-Wave Infra-Red
Index (SWIR-Index) to separate cropland, pasture, and natural savanna vegetation in the Brazilian
Cerrado by a spectral-temporal approach. SWIR bands showed more importance among 30 features
to the RF model, and the classification achieved an OA equal to 93% for six classes. SWIR and
associated VIs also allowed the accurate separability between foreground-background objects, such as
grassland and crops [157], and improved classifications accuracies in heterogeneous landscapes based
on S2/MSI [146,158] and L8/OLI time series [62]. Using Landsat data from 2000 to 2015, Cai et al. [159]
considered SWIR bands and the associated VI Land Surface Water Index (LSWI) [160] the most useful
information to classify maize and soybean, with an OA equal to 96%. Using S2/MSI data and the RF
algorithm to identify optimal temporal windows for crop mapping in southern China, Meng et al.
[161] showed that the use of all images during a cycle of crop growth is not necessary, considering
the later stages and the SWIR and NIR bands more useful. Assessing 28 VIs, Immitzer et al. [162]
demonstrate the suitability of S2/MSI SWIR bands to separate broad LULC classes and tree species.
SWIR-based VIs were used to classify built-up and bare lands [163,164].

The term Red-edge refers to the abrupt reflectance rise caused by vegetation within the
electromagnetic spectrum from 680 nm to 750 nm, which is related to two optical effects of plant tissue:
(a) strong chlorophyll absorption, causing low Red reflectance, and (b) high internal leaf scattering,
causing large NIR reflectance [165]. This spectral region is correlated with photosynthetic capacity
and is an important measurement of chlorophyll content and vegetation health [95]. The presence of
Red-edge bands in the S2/MSI mission expanded their use for LULC classification, representing a
significant spectral enrichment regarding other sensors used in LULC classification [166]. Especially in
circumstances of saturation, Red-edge bands have the potential to improve the accuracy of biomass
and crop yield estimates [58]. It has been reported that the Red-edge band close to Red wavelengths
(band 5) is related to the difference in chlorophyll content, while the one close to NIR (band 7) is
correlated to variations in leaf structure [38]. This suggests that the separability of Red-edge features
lies in both leaf structure and chlorophyll content of different vegetation species [85], which is suitable
to map heterogeneous landscapes, especially by using Red-edge-associated VIs [166].

Red-edge bands and associated VIs have been applied to estimate biophysical variables in
vegetation, as LAI, Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), and Gross
Primary Productivity (GPP) [84,167–169], suggesting that VIs formulated with Red-edge bands can
reduce the saturation when compared with VIs derived from the Red band. VIs like these use the
Red-edge region of the electromagnetic spectrum, taking as chlorophyll concentration contained in
vegetation, strongly correlates with it [84]. Several papers demonstrate that S2/MSI Red-edge bands
and associated VIs have provided more accurate results in LULC classification, thus improving overall
and class-specific accuracies. For Palchowdhuri et al. [102], the inclusion of Red-edge bands in a LULC
classification model positively impacted on vegetation classes and improved OA. Immitzer et al. [146]
showed Red-edge as the most important S2/MSI bands for crop discrimination over an Austrian
agricultural area. Radoux et al. [157] confirmed this assumption in southern Belgium, showing that
the second and third Red-edge bands performed better than the first. Integrating L8/OLI and S2/MSI
for LULC classification in West Africa, Forkuor et al. [144] showed that the use of S2/MSI Red-edge
bands improved the map accuracy in 4% compared to that of L8/OLI and other S2/MSI bands. In
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addition, the authors reformulated the Red-edge-based VI named Normalized Difference Vegetation
Index Red-edge (NDVIre) [170] formula with the Red-edge bands 5 and 6 of the S2/MSI, creating two
relevant Red-edge associated VIs.

Assessing the potential of the S2/MSI to classify grass species, Shoko and Mutanga [171] attested
the importance of Red-edge bands to equalize the OA with a Worldview-2 classification (high spatial
resolution) considering three species. Munyati et al. [39] indicated that the Red-edge VIs Chlorophyll
Index Red-edge (CIre) [172], Red-edge Inflection Point (REIP) [173], and NDVIre, and the proposed
SWIR ratio index can monitor grass tissue concentrations of soil nutrients as Nitrogen, Potassium,
Calcium, and Magnesium, which can be valuable features to increase the separability between natural
vegetation and crop type classes. Osgouei et al. [174] showed the potential of NDVIre to separate bare
land from built-up areas in Turkey using the SVM algorithm. The OA was equal to 93% mapping
seven classes. Extracting spatio-temporal information in VIs time series to classify crop types in
Manitoba, Canada, Niazmardi et al. [63] indicate that NDVIre performed better than NDVI and SAVI
(OA 88.31%, 87.27%, and 84.36%, respectively) for six crop types using RapidEye images to formulate
the VIs, and indicating that the integration among multi-sources can be more exploited to further
improve field-scale crop analysis and mapping. In the work of Griffiths et al. [107], the integration
between L8/OLI and S2/MSI data to generate a national-scale LULC map of Germany detecting the
crop type distribution at a 30 m spatial resolution, provided an OA equal to 81% for 12 LULC classes.
The inclusion of Red-edge bands improved all class-specific accuracies. Vincent et al. [175] attested
the importance of the S2/MSI Red-edge bands and derived VIs (NDVIre, SAVIre, MSRre, and CIre)
to map sunflower and wheat crops in India, using a c-means classification approach. Sun et al. [85]
mapped six LULC classes at one level and five crop types at another level using an RF classifier and
showed that including Red-edge, the OA of crop type mapping improved when compared with only
conventional optical features. The OA was equal to 94.05% and 83.22%, respectively. Lambert et al.
[158] attested the importance of Red-edge bands and associated VIs to map agricultural fields in Mali’s
cotton belt by using an RF algorithm. All of these results emphasize the robustness of these bands and
associated VIs to provide accurate mapping of different LULC classes in heterogeneous landscapes.

Although there are various studies exploring VIs for LULC mapping and monitoring, this is
still very restricted to the traditional ones. There is a lack of literature focusing on summarizing
combinations of several VIs for this. With L8/OLI and, especially, S2/MSI data, less frequently applied
VIs have been useful for improving classification results in dynamic and heterogeneous regions. The
suitability of less frequently applied VIs for mapping different LULC classes, considering the papers
cited in this systematic review, is summarized in Table 3, in order to provide guidance for future
applications. The formulas are presented in the Supplementary Material (Tables S1–S3).

In the future, harmonized Landsat and Sentinel data can drive the classifications, and the
potential inclusion of Red-edge [29,43,105,140], as well as additional narrower bands with 10
m spatial resolution in the visible, NIR, SWIR, and Thermal Infrared regions in future Landsat
missions [58], can boost the use of these and other VIs in a dense time series perspective, which
will be promising to improve accuracies. However, despite the differences between the L8/OLI and
S2/MSI band wavelengths, we observed that some of the cited VIs have different terminologies,
but the same formula, or different formulas for the same VI. The combination NIR/first SWIR
band (NIR-SWIR1)/(NIR+SWIR1) is named in the literature as Normalized Difference Infrared
Index (NDII) [176], recently employed with this nomenclature [40,150,152]; LSWI also recently
applied [114,144,159,177], NDMI, recently applied [129,153,178], and the frequently used NDWI
developed by Gao [92]. NDWI is also the name of the VI developed by McFeeters [99], which
differs from the Gao’s NDWI by using the Green band instead of SWIR. Similar to those, there is
the Normalized Difference SWIR (NDSWIR) [179] and the Normalized Burn Ratio (NBR) used by
Sonobe et al. [40], which use the NIR with the second SWIR band. Combining only the SWIR bands,
the Normalized Difference Tillage Index (NDTI) [180] has the same formula as the Normalized Burn
Ratio-2 (NBR-2): (SWIR1–SWIR2)/(SWIR1+SWIR2) , applied by Jakimow et al. [153].
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Table 3. Robustness of different and less frequent VIs to provide accurate mapping of different LULC classes.

Class/Parameter Spectral Vegetation Indices Attested by

Natural vegetation NDVIre, MNDWI, SRI, ARI, CIre,
GEMI, NDBI, MIRBI, NDFI, NDMI

Feng et al. (2015), Pelletier et al. (2016), Puletti et al. (2017), Lin et al. (2019),
Forkuor et al. (2018), Schultz et al. (2016), Carrasco et al. (2019)

Soybean NDVIre, LSWI, GCVI, CIre,
MSRre, SWIRIndex, PSRI, S2REP

Cai et al. (2018), Torbick et al. (2018), Müller et al. (2015), Liu et al. (2020)
Csillik et al. (2019), Defourny et al. (2019), Niazmardi et al. (2018)

Maize
LSWI, RedSWIR, TVI, NDTI, NDVIre, GCVI,
CRI700, IRECI, S2REP, CIre, CIred&re, MSR,
MSRre, MSRredre, NDVIre2n, SIPI, REIP, PPR, NGRDI

Radoux et al. (2016), Sun et al. (2019,2020), Cai et al. (2018), Xie et al. (2018),
Frampton et al. (2013), Kobayashi et al. (2019), Vincent et al. (2020)

Cotton NDVIre, LSWI, CIgreen, TVI, STI, NDTI Torbick et al. (2018), Lambert et al. (2018)

Beetroot AFRI1.6, SIWSI, NDII, PVR, mNDVI Sonobe et al. (2018), Kobayashi et al. (2019)

Potato REIP, CVI, Maccioni, Datt1 Sonobe et al. (2018), Kobayashi et al. (2019)

Wheat NDVIre, NDVIre2, MSR, MSRre, MSRredre, CIre, CIred&re,
PSRI, S2REP, REIP, AVI, SIPI, PVR, mNDVI, GARI, VARIgreen

Csillik and Belgiu (2016), Xie et al. (2018), Defourny et al. (2019),
Kobayashi et al. (2019), Vincent et al. (2020), Sonobe et al. (2018)

Barley CIred&re, NDVIre, MSR, MSRredre, PSRI, S2REP Xie et al. (2018), Defourny et al. (2019), Vincent et al. (2020)

Alfalfa CIred&re, NDVIre, CIre, MSR, MSRre, MSRredre, LSWI Csillik et al. (2019), Xie et al. (2018), Torbick et al. (2018), Vincent et al. (2020)

Millet NDVIre, CIre, CIgreen, STI Lambert et al. (2018), Forkuor et al. (2018)

Sorghum NDVIre, MNDWI, CIgreen, TVI, CIre Forkuor et al. (2018), Lambert et al. (2018)

Sunflower NDVIre, PSRI, S2REP, CIR&RE, SAVIr&re Niazmardi et al. (2018), Defourny et al. (2019), Vincent et al. (2020)

Rice LSWI, NDVIre, RERVI, CIre, MNDWI Torbick et al. (2018), Cao et al. (2019), Mansaray et al. (2019), Son et al. (2020)

Sugar beet RedSWIR, NDVIre Radoux et al. (2016) Csillik and Belgiu (2016)

Beans and groundnuts NDVIre, MNDWI, PVR, REIP, GEMI, Datt3 mNDVI, VARIgreen Forkuor et al. (2018), Kobayashi et al. (2019)

Tomato/Chili pepper CIre, NDVIre1n, NDVIre2n, MSRre, MSRren Sun et al. (2020)
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Table 3. Cont.

Class/Parameter Spectral Vegetation Indices Attested by

Bare soil MNDWI, NDBaI, NDBI, NDTI, WDVI, GEMI, DBI, MNDSI
DBSI, SRNIRnarrowRed, SRNIRnarrowGreen, RTVIcore, NRUI

Osgouei et al. (2019), Radoux et al. (2016),
Piyoosh and Gosh (2018), Rasul et al. (2018), Liu et al. (2020)

Grasslands, shrublands,
rangelands and pastures

SWIRindex, IRECI, RedSWIR, NDSWIR, NBR, NBR-2,
BAI, MNDWI, NDMI, REIP, MNSI, AFRI1.6

Müller et al. (2015), Radoux et al. (2016), Forkuor et al. (2018),
Jakimow et al. (2018), Carrasco et al. (2019), Sonobe et al. (2018)

Mangrove CMRI, MMRI, DNVI Chen (2020), Diniz et al. (2020), Manna and Raychaudhuri (2018)

Water bodies MNDWI, NHI, VSDI Radoux et al. (2016), Pelletier et al. (2016), Rasul et al. (2018),
Feng et al. (2015), Forkuor et al. (2018), Guttler et al. (2017)

Settlements and
built-up areas

MNDWI, NDBI, MNDBI,
IBI, DBI, DBSI, NRUI

Forkuor et al. (2018), Pelletier et al. (2016),
Mansaray et al. (2018), Piyoosh and Gosh (2018), Rasul et al. (2018)

Source: Cited papers.
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Red-edge associated VIs also have their nomenclature confused in some moments. The CIre,
original formula (NIR)/(695 nm–740 nm)−1, developed by Gitelson et al. [172], was already formulated
using NIR and Red-edge bands [37,86,168], two Red-edge bands [39,85,167,169], and Red-edge and
Green bands [158]. The NDVIre (also called RENDVI) [170] , formula (NIR − RE1)/(NIR + RE1),
received variations along the time, as the inversion of the Red-edge position in the formula (RE1
− NIR)/(RE1 + NIR) [174] and the use of other Red-edge and NIR bands of S2/MSI [38], but these
changes are rarely named differently. This nomenclature has already been partially modified to
Normalized Difference Red-Edge (NDRE), being referred to as the previous NDVIre formula [86] or to
the formula (RE2 − RE1)/(RE2 + RE1) and its variation NDRE2, formula (RE3 − RE1)/(RE3 + RE1),
both formulations recently applied to LULC classifications [40,61,152,169]. The VI represented by
the mathematical expression ’NIR/Green—1’, developed by Gitelson et al. [181], was already named
Chlorophyll Index Green (CIGreen) [38,168] and Green Chlorophyll Vegetation Index (GCVI) [13,182].

Additionally, the type of approach causes differences in VIs that uses the S2/MSI NIR and visible
bands. When the VI is derived from a dense time series approach combining S2/MSI and L8/OLI
and resample procedures, the narrower S2/MSI NIR band 8A (855–875 nm) is more recommended,
as it is more comparable to the L8/OLI NIR band 5 (851–879 nm) [42,66,111,123]. When only S2/MSI
bands are used, the broad S2/MSI NIR band 8 (785–900 nm) is more recommended because 8A has a
different spatial resolution (20 m) from the visible bands (10 m) [33,64,65,93,166,183]. This issues makes
it necessary to revisit previous studies before choosing a VI correspondent with the research objectives.

5.3.2. Phenological Metrics

Phenology-based LULC classification approaches are useful for mapping different crop types [184]
and can be important for ensuring food security and agronomic management of crops. This situation
permeated the development of methods to extract phenological metrics (phenometrics) (i.e., start, peak,
end, and length of a season, maximum and quartile values of spectral indices and spectral bands) to
describe critical moments of phenological cycles through timing and value of specific temporal points
of interest [63,104,116]. Phenometrics can be defined as the temporal characteristics that indicate crop
seasonality, and have the potential to represent crop growth [185]. Zeng et al. [28] summarized different
methods for extracting phenometrics, pointing out that the selection of the most appropriate method
should consider the biogeographical characteristics of the study area, potential noise sources in the data,
and the shape of VI time series. The current practices for large area multi-temporal LULC classification
consist of deriving metrics from the time series and then classify the metrics bands [1,186]. Most of
these efforts to extract phenological information from vegetation were conducted using MODIS data
due to its high temporal resolution and applicability to obtain robust time series information [12,123].
However, MODIS images at 250 m or 500 m spatial resolution have problems with mixed pixels [66].

Phenology-based LULC classification using Landsat-like data is growing after the S2/MSI launch
but remains challenging. We noted difficulties to extract phenometrics from L8/OLI and S2/MSI data,
especially in regions marked by climatic conditions that cause signal interferences, modifying time
series patterns. L8/OLI data are less explored due to the temporal resolution of 16 days, and S2/MSI
data are mostly used for detecting plant pigments, discriminating different vegetation classes, mapping
crop types, and estimating the yield of crops, and even within the croplands, phenometrics are not
always calculated [187]. Integrating L8/OLI and S2/MSI data would significantly improve the
temporal resolution of observations [41] and could provide an effective solution to the low availability
and low spatial resolution; however, it is still common to integrate MODIS data to improve crop
phenological cycle identification [66].

Frantz [116] presented how the FORCE framework approach has innovative ways for deriving
phenometrics from dense time series. The framework is capable of deriving this information from
MODIS, L8, and S2 data, and can be used as baseline products to support scientific to operational
applications for environmental and agricultural monitoring purposes. To complement data products
already derived from time series MODIS images, Liu et al. [66] extracted phenological information
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to calculate cropping intensity, presenting that the expansion of high-quality observations from the
integration of L8/OLI and S2/MSI data improved the results. Wulder et al. [47] recognized the
importance of phenometrics to maximize time series information and minimize noise before large
area multi-temporal LULC classification, as these metrics are robust to deal with missing data and
phenological variations, citing the implementation of data fusion approaches based upon blending
of MODIS and Landsat data to produce synthetic gap-free composites. Zhang et al. [123] combined
the MODIS MCD12Q1 500 m land cover product and phenometrics extracted from consistent and
pre-processed Landsat time series to classify 16 LULC classes over North America. They obtained OAs
ranging between 93.13% and 95.44% in RF approaches.

Using Landsat EVI and co-registered accumulated growing degree-days (AGDD) MODIS time
series as input for LULC classification, Nguyen et al. [188] adopted a model-fitting approach to describe
phenological characteristics, such as the timing of the growing season, EVI peak, and timing of the EVI
peak of eight LULC types in South Dakota (USA). Fitted parameter coefficients and phenometrics at
pixel-level were submitted to an RF classifier to characterize LULC for the study area. They achieved
OAs over 75%, showing the potential and limitations of integrating phenometrics to improve land
surface characterization and LULC classifications. Bolton et al. [12] developed the multi-sensor land
surface phenology (MS-LSP) algorithm to detect seasonal variations in vegetation phenology and
to calculate phenometrics in HLS EVI time series for all of North America. They compared them
with metrics extracted from the PhenoCam network and the MODIS MCD12Q2 product, showing a
correlation equal to 90% with PhenoCam data for 50% green-up dates for deciduous broadleaf forests.
Pastick et al. [189] used MODIS and HLS NDVI image composites to extract phenometrics and then
map invasive annual grass species in the western USA, in a data mining framework. They achieved
high correlations to different phenological stages, improving the mapping in comparison to models
that use MODIS products or monthly, seasonal, or annual HLS composites as primary inputs.

Different approaches were developed only with Landsat-like data. Son et al. [177] demonstrated
the efficacy of using phenometrics extracted from multi-temporal S2/MSI data for updating rice crop
maps and monitoring cropping practices over a large and heterogeneous region, by detecting key
phenological dates, as transplanting and heading dates. In a deep learning-based multi-temporal crop
classification in California (USA), Zhong et al. [104] presented the importance of phenometrics for
improving classification accuracy. They explored neural network classifiers, XGBoost, RF and SVM,
and metrics derived from Landsat 7 Thematic Mapper (L7/TM) and L8/OLI time series, achieving
OAs above 82%. Schwieder et al. [109] explored phenometrics derived from dense Landsat time
series to improve the classification of 7 Cerrado physiognomies, in Brazil. Their phenology-based
physiognomy map achieved OAs of 63% with 10-fold cross-validation and 96% with a validation
scheme to accommodate for spectral-temporal class similarities along the vegetation gradient.
Using phenometrics derived from Landsat time series, Müller et al. [156] improved the separability
among six classes of cropland, pasture, and natural savanna vegetation in the Brazilian Cerrado by a
spectral-temporal approach. They achieved an OA equal to 93%. Schmidt et al. [190] applied several
phenometrics of summer and winter growing seasons derived from Landsat data to identify crop and
no-crop areas in Queensland, Australia, at field-scale. The OAs were above 90% and these metrics were
among the most important variables in the classification. Griffiths et al. [107] discussed the potential
of phenometrics to classify crop types with higher thematic detail from multiple crop seasons over
large study areas. This was attested by Bendini et al. [68], after extracting different phenometrics as
attributes from dense Landsat time series for classifying croplands in different Brazilian regions with
accuracies higher than 90%.

Peña and Brenning [191] extracted phenometrics of the green-up and senescence phenological
stages in L8/OLI time series to identify optimal image acquisition dates to map five fruit-tree crop
types in Chile. They obtained an OA equal to 94%. Htitiou et al. [192] highlighted the potential of
phenometrics derived from S2/MSI and L8/OLI NDVI smoothed time series to identify 12 LULC
classes (10 crop types) over irrigated areas in Morocco using RF classification. The classifications
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based on S2/MSI and L8/OLI data presented OA of 93% and 90%, respectively, showing potential for
detecting phenological stages of different cropping systems over semi-arid regions. Zhang et al.
[193] integrated L8/OLI and HJ-1/Charge-Coupled Device (HJ-1/CCD) data in an approach to
mask non-vegetation areas and then extract key phenometrics of four crop types from long-term
NDVI time series profiles in Jingzhou, China. They obtained OA equal to 92%, demonstrating the
potential of phenometrics-based crop classification. Although using RapidEye images, Niazmardi
et al. [63] improved their results for crops classification in Canada after extracting temporal and spatial
metrics from time series VIs (NDVI, NDVIre, and SAVI) as histogram-based spatio-temporal features,
highlighting their importance to characterize both the temporal and spatial crop patterns.

The exploitation of deep learning techniques and phenometrics extracted from SITS can also
improve LULC classifications and crop status monitoring during a growing season [131,133,194].
However, their potential has not yet been fully exploited, considering their applicability for
mapping multiple cropping systems and cultivation practices in highly dynamic regions [104,156,190].
For example, there are few papers using red-edge bands to estimate phenometrics. Hence, more efforts
are required for testing the efficiency of S2/MSI data in estimating phenological phases and extracting
phenometrics [187].

5.3.3. Data Hierarchy and Ancillary Data

Hierarchical classification approaches can also be developed in order to obtain maps at different
thematic levels, enabling, for example, the evaluation of the cropping practices and crop types
independently of the use of a priori cropland mask, discriminating more vegetation species [68,83,195].
This approach can potentialize the suitability of Red-edge bands for the decomposition of vegetation
types [146,162].

LULC classifications performance can also be improved by including additional input
variables [11], especially those above concerning the pixel level. Pixel enrichment with geographic
objects is a promising application in this case [10]. However, providing analysis across a broad
geographic scale is a great challenge, and multi-temporal segmentation methods are in development
to solve it and to support LULCC analysis. Meanwhile, different methods that arrange different
datasets about human activities (i.e., crop management practices) and geographic conditions are being
considered to provide data beyond the pixel information, improving LULCC detection.

Several studies have shown the importance of contextual ancillary variables such as topographic,
textural, and climatic data to be used as metrics or features to provide information about the structure
and morphology of landscape context [80,196], mitigating spectral confusion among spectrally similar
classes [197,198]. Zhao et al. [197] remark the importance of topographic data to map LULC in
Chile, a complex topographic region. In addition, for Chile, Zhu et al. [198] showed that a Digital
Elevation Model and its derivatives (aspect, position index, and slope), water, snow, and cloud
probabilities improved LULC classification. Incorporating texture metrics to increase the separability
among different LULC types was highlighted by [121]. Gilbertson and van Niekerk [199] showed
that incorporating textural metrics within an OBIA approach improved crop classification accuracies.
Discriminating between different forest stages, Ref. [150] demonstrated the importance of textural
metrics of Red-edge and SWIR bands and associated VIs. Chen et al. [17] reinforced the importance
of texture as a subtle feature for differentiating cultivated lands from natural vegetation. Wang
et al. [21] showed the importance of downscaling to extract more accurate texture information.
Frantz [116] employed textural and spectral homogeneity metrics in the FORCE framework approach.
Texture metrics are applied in the OBIA approach because the traditional per-pixel based methods
are not completely suitable for understanding landscape shape and context [80]. Zeferino et al. [196]
demonstrated that classification accuracies of heterogeneous areas, as Eastern Amazon, Brazil, can
be improved by incorporating environmental variables (e.g., geological, pedological, climatic and
topographic) in a model based on RF algorithm and L8/OLI spectral data.
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5.3.4. Data Cubes and ARD

The unprecedented availability of satellite data derived from recent changes in costs of imagery
and computing technology have enabled a new approach to work with big data, integrating different
platforms and data providers [22,33]. One potential form for encompassing data storage and processing,
network requirements, and web applications, providing interoperability, access, analytics, and the
sharing of EO imagery is the organization of the data in the broadly referred data cube format [49,200].
Lewis et al. [137] defined data cube as a regular, non-overlapping, tiles of gridded sensor data,
stacked according to the time of data capture (observation), leading to a data cube visual metaphor.
Nativi et al. [143] considered a data cube as an infrastructure defined to allow data analysis, ready to be
used, and interoperable at the programmatic level of the users. This term is widely used to refer to data
integrated into multidimensional structures. Appel and Pebesma [201] considered data cube as a 3D
array with two spatial dimensions, one temporal dimension, and an arbitrary number of attributes with
the spatial dimensions which refer to a spatial reference system; the cells of a data cube have a constant
spatial size; there is no spatial or temporal overlap between the cells; temporal reference is a known set
of temporal intervals; and a cell has a vector of attributes for every combination of dimensions.

Both data cube and big data concepts converge along with remote sensing imagery into Earth
Observation Data Cubes (EODC), an approach to storing, organizing, managing, and analyzing
Earth Observation data [202]. The main objective of EODC is to facilitate EO data usage by
addressing Volume, Velocity, Variety challenges, and providing access to large spatio-temporal
data in an analysis-ready format [203]. Focusing on analyzing LULCC trajectories, EODC can be
observed as a time series associated with spatially aligned partitions of space ready for analysis [201],
outperforming other technologies for time series analysis of large satellite analysis-ready data
(ARD) [143]. Many initiatives have been developed to build high temporal frequency data cubes to
generate accurate LULC classification, such as the Australian Data Cube [137] and the Swiss Data
Cube [57]. Additionally, operational platforms and technologies, such as Open Data Cube (ODC) [137],
e-sensing [204], and Google Earth Engine (GEE) [205] are capable of analyzing EO data in a data cube
format. These initiatives are paving the way for broadening the use of EO data to larger communities of
users, supporting decision-makers with information converted into meaningful geophysical variables,
and ultimately unlocking the information power of EO data [136].

Lewis et al. [137] described the creation of data cubes using surface reflectance products from
remote sensing images and a software environment to manage them called the Australian Geoscience
Data Cube (AGDC). This definition includes not only the data cubes of satellite imagery, but also the
processes to build and the software environment required to access, prepare, index, and manage them.
The AGDC was transformed into the AGDCv2, supporting other coordinate systems, formats, and data
provenance, and renamed to ODC with operational deployments initiatives, such as the operational
EO service called Digital Earth Australia (DEA) [206]. Giuliani et al. [57] used interoperable service
chains to produce Landsat ARD for the Swiss Data Cube (SDC). To have ARD products ingested,
stored in a database, and readily available, the SDC defined a workflow for ARD production, based on
data acquisition, pre-processing, and conversion to surface reflectance. Augustin et al. [207] proposed
the semantic EO data cube, which has for each observation at least one categorical interpretation
that can be queried in the same instance. Therefore, semantic content-based queries covering an
area of interest in each temporal extent are possible, such as an observed moment in time with the
maximum vegetation extent. Mahecha et al. [208] introduced the concept of Earth system data cubes
and implemented an integrating ARD with a suitable analytic interface, as a way to treat multiple data
dimensions, and allow the effective application of user-defined functions to co-interpret EO data.

The use of ingestion, and storage of ARD is common to each data cube conceptualization
and initiative, which is a result of processing satellite imagery going from data acquisition to
radiometric calibration and additional conversions to Top-of-Atmosphere (TOA) reflectance, and finally
to surface reflectance [22,209]. Unfortunately, different EODC initiatives are being developed
using contrasting strategies to produce ARD. Consequently, getting uniform and consistent ARD
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remains a challenge [49]. The CEOS Analysis Ready Data for Land (CARD4L) Framework (https:
//ceos.org/ard) states that satellite data should meet certain requirements—including interoperability
through time, space, and with other datasets—and also should allow immediate analysis with
minimum effort. Dwyer et al. [203] state the importance of gridding the data to a common equal-area
projection and other processing procedures to provide adequate ARD such as Top-of-Atmosphere
Reflectance (ToA), Brightness Temperature, Surface Reflectance, Provisional Surface Temperature,
and Quality Assessment.

Upon observation, Qiu et al. [210] evaluated the temporal consistency of the USGS Landsat
ARD dataset and recommended several processing streamlines related to resampling, cloud/cloud
shadow detection, Bidirectional Reflectance Distribution Function (BRDF) and topographic corrections,
before using it for SITS analysis. Applying these recommendations, Potapov et al. [209] explored
the concept of ARD defined by CEOS to describe the 16-day GLAD ARD product (https://glad.
umd.edu/ard/home) developed to be used as input for LULC and LULCC mapping. However,
despite global radiometric consistency, the product does not represent surface reflectance and is not
suitable to be directly used as input for precise measurement of photosynthesis, water quality, and
other variables that require actual surface reflectance, such as LULC mapping, due to the irregular
frequency of clear-sky observation. Hence, they recommend considering the use of phenological and
change detection metrics to overcome these issues.

5.3.5. Incorporating Radar Data

Another type of integration to be more explored is the integration of optical and Synthetic
Aperture Radar (SAR) data. SAR data are useful for extracting crop planting areas and identifying
crop types [131]. This technology improves the acquisition of data in decisive monitoring periods
since it explores surface characteristics and is independent of solar illumination and cloud cover [114],
factors that may limit the optical data acquisition. Despite this limitation, SAR data was restricted
to the scientific community for a long period because of their limited availability caused by the
scarcity of good digital elevation models (DEM), as well as the more complex data structures required
concerning optical data [114,131]. Due to the launch of the ESA’s Sentinel-1 mission that comprises
a constellation of two polar-orbiting satellites to acquire imagery regardless of the weather, and the
availability of a dual polarization (VV+VH) C band (5.36 GHz) SAR data product, the use of SAR data
has been diffused to mitigate the cloud interference [3] and classification limitations in heterogeneous
landscapes [109]. Due to cloud cover, the optical data can present discontinuity in key growth stages
of crops [158]. For crop types with similar phenological cycles, this integration can improve reliable
discrimination [85]. As SAR can reflect vegetation structure, and optical imagery captures crop
multi-spectral information, the synergetic use of both types of data can be complementary to each
other [93], integrating SAR sensor with all-weather capability with spectral information and short
revisit periods provided by the optical sensor [166].

The principal SAR features observed were Haralick textures, polarizations, backscattering
coefficients, and polarimetric decompositions. Sun et al. [131] used S1, S2/MSI, and L8/OLI
multi-temporal data and SVM, RF, and Artificial Neural Network algorithms to identify six crop
types obtaining a high OA (0.93), especially with RF. Clerici et al. [166] integrated S1 and S2/MSI data
for LULC classification in the Magdalena region, Colombia, producing a LULC map with an OA equal
to 88.75% when mapping six classes using the SVM algorithm. Kussul et al. [20] used multi-temporal
optical and SAR data and applied the multi-layer perceptron classifier for crop mapping in Ukraine,
achieving an OA over 88% for 11 classes. Steinhausen et al. [3] integrated S1 and S2/MSI data to
classify 13 LULC classes in the Chennai Basin, India, a cloud-prone monsoon region with small-scale
agriculture and multiple cropping patterns, in the 2015/16 harvest period, with an OA equal to 91.53%.
Poortinga et al. [211] attested that the integration between L8/OLI, S1, and S2/MSI elevated the
classifications’ accuracy in Myanmar in 2017 and 2018 up to 91%. Improvements in this sense were
also observed by Carrasco et al. [178] when mapping 30 LULC classes over Wales. Mercier et al. [138]
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used S1 and S2/MSI time series to monitor forest and agriculture mosaics over two heterogeneous
landscapes: a temperate mountainous landscape in the Cantabrian Range (Spain) and a tropical
forested landscape in Paragominas (Brazil). The mean Kappa increased from 0.59–0.83 to 0.55–0.85
when integrating both data. In addition, the method enables defining key periods that discriminate
LULC classes. The analysis showed the importance of VV and VH polarization and SWIR bands’ data
for the classification. Vincent et al. [175] also obtained positive effects optimizing the temporal date
images to map sunflower fields.

Mapping wetland classes, Kaplan and Avdan [212] attested that Red-edge bands have significant
influence over intensive vegetated classes, while radar bands have more influence over partially
decayed vegetated ones. Chatziantoniou et al. [183] evaluated the integrated use of S1 and S2/MSI
data with the SVM classifier for mapping wetlands in the National Park of Koronia and Volvi Lakes,
in Greece. The OA was equal to 94.82% dividing pasture types into three classes; single-species,
two-species composition and multi-species composition, attesting the suitability of S1 and S2/MSI
data for improving LULC classification in humid areas. For mangrove areas, less frequent VIs have
presented interesting advances in classification workflows [213–215]. Crabbe et al. [216] demonstrated
that integrating S1 and S2/MSI features improved the classification of pasturelands in Australia.
The OA using K-Nearest Neighbours (KNN) classifier was 0.89, while 0.96 and 0.93 when using
RF and SVM, respectively, mapping six classes. Sonobe et al. [217] mapped six crop types in Japan
using images of the 2016 growing season with an OA of 96.8% applying a kernel-based extreme
learning machine (ELM) classification model, attesting the relevance of VV polarization and Red
band. Improvements in classification performance were also noted by Sun et al. [85] evaluating the
synergistic use of S1 and S2/MSI time series for oasis crop type discrimination in China. Cai et al. [182]
proposed an object-based method for paddy rice mapping using S1 and S2/MSI time series deriving
phenological parameters. Integrating S2/MSI NDVI, S1 backscattering time series, and phenology
data, the OA was 95% for rice and four other classes, providing suitability for rice mapping in cloudy
and rainy areas.

Different methodologies integrated L8/OLI, S1, and S2/MSI data into RF and SVM approaches
to map rice in heterogeneous and cloud prone areas in China. The results indicated that the
integration of VH polarization and spectral indices can produce accurate rice distribution maps
in these environments [218,219]. Ienco et al. [141] presented a deep learning architecture to integrate
S1 and S2/MSI time series, namely TWINNS (TWIn Neural Networks for Sentinel data), useful to
discover spatial and temporal dependencies. Liu et al. [66] developed an algorithm to integrate L7/TM,
L8/OLI, and S2/MSI time series data to map cropping intensity at large scales across seven study
areas in China. Based on field-scale sample data, the annual cropping intensity maps for the study
areas had accuracy rates of 89–99% and Kappa of 0.76–0.91 mapping three classes: single, double, and
triple-cropping. The OA of the annual cropping intensity maps was 93%, with a Kappa of 0.84.
Onojeghuo et al. [220] applied co-registered multi-temporal S1 data and L8/OLI-derived NDVI data to
produce 10 m spatial resolution maps of paddy rice fields across the Sanjiang plain, China, with limited
ground data. The accuracies were 95.2% (OA) and 96.7% distinguishing paddy rice fields from non-rice
fields, vegetated areas, and built areas. Despite these results, the effective integration between these
properties is not simple [141]. The joint use of data cube architecture [136] is a promising strategy for
overcoming the big volume of remote sensing data generated by processing integrated sources. Other
alternatives are cloud computing services, such as AWS and GEE, already consolidated for analysis of
large terrestrial surface orbital data sets. Weiss et al. [50] explained that the open data policy for remote
sensing facilitated the exploitation of dense data from different sources. Such emerging technology
also allows for a change in thinking towards crop type mapping over large areas, which can leverage
new techniques like adjusting the spatial resolution requirements locally [221].
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5.4. Summary of Applications

As noted, the L8/OLI and S2/MSI data have been applied in different ways, and a summary can
guide new users (Figure 8).

Figure 8. Scientific network mapping summarizing applications and approaches adopted with L8/OLI
and S2/MSI data. Colors indicate the cluster in which each term was related the most. Lines represent
co-occurrence link strength among terms.

We noted a prevalence of exploring the quality of the L8/OLI and S2/MSI data to calculate
VIs, extract phenometrics, biophysical parameters, and select temporal or spatial features.
Supervised classification was the principal classification approach adopted in the reviewed papers,
by machine learning techniques, deep learning, and artificial neural networks. Automatic classification
is growing and can be further explored. Big data analytics and multi-sensor approach expanded
recently by the advent of new technologies, such as data cubes, ARD, and cloud computing,
in very efficient strategies to implement data fusion, surface reflectance transformation, atmospheric
correction, spatial and temporal segmentation, gap filling, and cloud masking algorithms. Jointly
with integration methods, this enables multi-temporal and dense time series analysis, improving data
mining, and different clustering and compositing techniques. These connections can guide new users
to the best practices to apply the L8/OLI and S2/MSI data in future studies.
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6. Conclusions

L8/OLI and S2/MSI data have a vast recent application that demonstrates their potential to
overcome the challenges concerning the identification of LULC classes in heterogeneous ecological
gradients from forests to agricultural areas. The principal gap becomes a representative sample dataset.
Classification models tend to achieve higher accuracies when using representative samples, while the
use of RF, SVM, and neural network algorithms have allowed detecting LULC classes, with no
significant difference among them, besides the fact that deep learning methods are also growing.
Moreover, spectral band combinations, exploring the electromagnetic spectrum, as highlighted by the
use of SWIR and Red-edge bands, increase the classification performance of a wide range of LULC
classes as well as the retrieval of biophysical parameters.

Less frequently applied VIs have been useful to distinguish more vegetation classes from a
multi-temporal and multi-sensor analysis perspective [222], especially in areas with a high diversity
of classes with similar spectral characteristics. However, its important to revisit previous studies to
understand how they were used and to avoid confusions before choosing a VI correspondent with the
research objectives.

Despite our focus in L8/OLI bands, we noted less application of thermal bands of the L8/Thermal
InfraRed Sensor (TIRS) for LULC classification and LULCC detection. This scarceness of thermal
bands application also was detected and discussed by Weiss et al. [50] in a meta-review article about
remote sensing for agricultural applications. The authors explain that this occurs since the signal is
much more variable in time according to the plant stand microclimate, and the calibration of the TIR
sensor in field conditions is also more complex and delicate as compared to the solar spectral domain.
The application of thermal bands is more useful using UAV and in-field cameras, as pointed out by
García-Berná et al. [223].

The results presented in this systematic review can guide the scientific community to the use
of L8/OLI and S2/MSI data for LULC and LULCC applications. In addition, the prognosis on the
continuity of Landsat and Sentinel series, expanding the use of the electromagnetic spectrum and
incorporating SAR data, is promising and will ensure the availability of data necessary for the remote
sensing community interested in LULC and LULCC applications, creating a robust and dense virtual
constellation to overcome the limitations of traditional approaches, and enabling more detailed and
consistent knowledge of the landscape.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/18/3062/
s1, Table S1: Conventional vegetation indices cited in the systematic review, Table S2: Less frequent vegetation
indices cited in the systematic review as input for LULC mapping, Table S3: Less frequent vegetation indices that
can be further explored as input for LULC mapping.
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