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Lagrangian chaotic saddles and objective vortices in solar plasmas
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We report observational evidence of Lagrangian chaotic saddles in plasmas, given by the intersections of
finite-time unstable and stable manifolds, using an ≈ 22 h sequence of spacecraft images of the horizontal
velocity field of solar photosphere. A set of 29 persistent objective vortices with lifetimes varying from 28.5
to 298.3 min are detected by computing the Lagrangian averaged vorticity deviation. The unstable manifold of
the Lagrangian chaotic saddles computed for ≈ 11 h exhibits twisted folding motions indicative of recurring
vortices in a magnetic mixed-polarity region. We show that the persistent objective vortices are formed in the
gap regions of Lagrangian chaotic saddles at supergranular junctions.
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Recent advances in dynamical systems and chaotic advec-
tion allow in-depth analyses of the formation and evolution of
vortices in turbulent flows in fluids and plasmas. In stationary
vector fields, unstable and stable manifolds form transport
barriers that are invariant under the flow, being responsible
for stretching and folding in the mixing of passive tracers.
In time-varying vector fields, the corresponding version of
unstable and stable manifolds of particle trajectories con-
stitute distinguished material lines or surfaces that act as
transport barriers that are invariant in the extended phase
space of position and time. These distinguished lines or sur-
faces are the hyperbolic Lagrangian coherent structures that
attract or repel the neighboring material [1], both retarding
and facilitating transport fluxes. Hence, they are responsible
for organizing and mediating the transport and interaction
of matter and energy in the flow. In particular, the attract-
ing and repelling hyperbolic Lagrangian coherent structures
act as transport barriers that enable the formation of the
elliptic Lagrangian coherent structures (vortices) [2–4]. La-
grangian coherent structures have been extensively studied in
atmosphere and ocean [1,5] and have been investigated by
numerical simulation of nuclear fusion [6] and ionospheric
[7] and astrophysical [3,8,9] plasmas, as well as observa-
tion of laboratory [10], ionospheric [11], and solar [4,12–16]
plasmas.

Chaotic saddles given by the intersections of unstable and
stable manifolds are chaotic invariant sets in the phase space
that are not attracting, which are related to transient chaos
and fractal patterns in the advection dynamics [17] as well
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as edge of chaos [18]. The phenomenon of chaotic saddles
in plasmas has been studied in the theory of tokamaks [19],
Alfvén waves [20], drift waves [21], magnetorotational insta-
bility [22], and magnetoconvection [23]. Lagrangian chaotic
saddles have been observed in atmospheric and laboratory
studies of chaotic advection [24].

Explosive and eruptive events with multiscale spatiotem-
poral dynamics such as flares and coronal mass ejections in
the active Sun [25] and microflares and minicoronal mass
ejections in the quiet Sun [26] are driven by photospheric
vortical flows in the vicinity of the polarity inversion lines
and at supergranular junctions, respectively. Hence, the study
of the origin and evolution of long-lived vortices in the
solar turbulence is fundamental for understanding physical
processes that may lead to coronal eruptions. Solar super-
granulations can originate from thermal magnetoconvection
processes such as magnetized Rayleigh-Bénard convection
[14]. Chaotic saddles have been studied in numerical simu-
lations of Rayleigh-Bénard convection [27] and in a reduced
model of magnetoconvection [23].

The aim of this paper is twofold: (1) to investigate the
genesis and life cycle of persistent objective vortices at super-
granular junctions in the quiet Sun using Hinode spacecraft
imaging of the photosphere and (2) to report the observation
of Lagrangian chaotic saddles in solar plasmas and elucidate
their pivotal role in the nonlinear dynamics of persistent vor-
tices in supergranular turbulence.

The analysis is done using the photospheric horizontal ve-
locity fields deduced by the local correlation tracking method
from an ≈ 22 h sequence of Hinode continuum intensity im-
ages of the Sun’s disk center, with a cadence of 90 s, from
08:31:15 UT on 2010 November 2 to 06:19:42 UT on 2010
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November 3 [4,15,28,29]. Despite the limitation of the local
correlation tracking method in underestimating the velocity
fields, it provides a useful proxy for reconstructing many mor-
phological features of the solar plasma flow [30]. In a previous
paper [4], Lagrangian coherent structures in the photosphere
were studied for an ≈ 7 h reduced data set, which is not long
enough to identify Lagrangian chaotic saddles with precision.
In this paper, we are able to detect Lagrangian chaotic saddles
using a long data set of ≈ 22 h. In particular, the unstable man-
ifold of the Lagrangian chaotic saddles computed for ≈ 11 h
in this paper is capable of demonstrating the twisted folding
motions associated with the recurrence of persistent vortices
in a magnetic mixed-polarity region which is not possible with
the ≈ 7 h reduced dataset. Moreover, in the previous paper
[4] the elliptic Lagrangian coherent structures were detected
using prefixed durations of 15 and 60 min without obtaining
any information about the vortex life cycle. In this paper, we
carry out a comprehensive survey of long-duration elliptic
Lagrangian coherent structures in the region of a supergran-
ulation and its neighborhood by determining systematically
the initial and final times of a set of 29 persistent objective
vortices and measuring their properties during their lifecycles.

First, we detect the hyperbolic Lagrangian coherent struc-
tures in supergranular turbulence by computing the backward
and forward finite-time Lyapunov exponent (b-FTLE/f-FTLE)
[31] for an interval of ≈ 11 h, respectively, of the horizontal
velocity field and advecting a dense grid of 405 × 405 tracer
particles over the domain of interest. Note that the finite-time
Lyapunov exponent is objective, i.e., independent of the ob-
server’s frame of reference [1]. Advecting a particle backward
in time reveals the attracting hyperbolic Lagrangian coherent
structures (time-dependent unstable manifolds) in the b-FTLE
field, whereas advecting a particle forward in time reveals
the repelling hyperbolic Lagrangian coherent structures (time-
dependent stable manifolds) in the f-FTLE field. Figure 1(a)
shows the plot of b-FTLE using a sequence of 436 frames
of the horizontal velocity field, calculated backward in time
from 19:25:29 UT to 08:31:15 UT on 2 November 2010,
which unravels the time-dependent Lagrangian boundaries of
supergranular cells. Thin ridges of large positive b-FTLE in
Fig. 1(a) represent the locally strongest attracting material
lines that exert the most influence on the converging transport
of supergranular flows in the given time interval. These ridges
act as sinks for the down draft of photospheric flows that lead
to vortical motions. Chian et al. [4,13] demonstrated the link
of the attracting hyperbolic Lagrangian coherent structures to
the network of intense concentration of magnetic fluxes at
supergranular junctions. Figure 1(a) shows that the area of
observation covers a section of solar surface containing one
supergranular cell and its surroundings.

Figure 1(b) shows the plot of f-FTLE computed forward
in time from 19:25:29 UT on 2010 November 2 to 06:19:42
UT on 2010 November 3, using a sequence of 436 frames of
the horizontal velocity field, to yield the repelling hyperbolic
Lagrangian coherent structures. The black pluses denote the
locations of time-dependent Lagrangian centers of supergran-
ular cells determined by the local maxima of f-FTLE [4].
Thin ridges of large positive f-FTLE in Fig. 1(b) represent the
locally strongest repelling material lines which exert the most

FIG. 1. Lagrangian chaotic saddles. (a) Finite-time unstable
manifolds given by b-FTLE computed from 19:25:29 UT on 2010
November 2 to 08:31:15 UT on 2010 November 2. (b) Finite-time
stable manifolds given by f-FTLE computed from 19:25:29 UT on
2010 November 2 to 06:19:42 UT on 2010 November 3. The black
pluses mark the Lagrangian centers of supergranular cells. (c) La-
grangian chaotic saddles (red points) determined by the intersections
of the thresholded finite-time unstable (green) and stable (blue)
manifolds obtained from Figs. 1(a) and 1(b), respectively, with the
threshold of b-FTLE (f-FTLE) given by 0.3 × 10−4(0.25 × 10−4),
respectively. The white/magenta box marks a mixed-polarity region
of magnetic fields dominated by vortical flows.
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influential impact on the diverging transport of supergranular
flows in the given time interval. These ridges provide the
transport barriers that facilitate the formation of vortices and
concentration of strong magnetic fields in the valleys (i.e.,
low-value regions) of f-FTLE. Yeates et al. [12] and Chian
et al. [13] demonstrated the link of f-FTLE to the squashing
factor, which identifies the most likely sites for the occurrence
of magnetic reconnection [32].

In Fig. 1(c), we superpose the thresholded unstable (green)
and stable (blue) manifolds given by Figs. 1(a) and 1(b),
respectively. Lagrangian chaotic saddles, denoted by the set
of red points, are given by the intersections of finite-time
unstable and stable manifolds. The void region of Lagrangian
chaotic saddles along the unstable manifolds in Fig. 1(c)
where the red points are absent is known as the gap region.
It follows from Fig. 1 that the stable manifolds connecting
the Lagrangian centers of supergranular cells [4] contribute
to the formation of Lagrangian chaotic saddles, which play a
key role in the Lagrangian skeleton of turbulence [33] in the
photosphere.

The computation of the backward and forward finite-time
Lyapunov exponents for a long duration of ≈ 11 h yields sharp
images of the ridges of the hyperbolic Lagrangian coherent
structures seen in Figs. 1(a) and 1(b). The thresholded plots
of Fig. 1(c) facilitate the visualization of Lagrangian chaotic
saddles and the fine details of Lagrangian coherent struc-
tures. Note that in reality a chaotic saddle contains an infinite
number of points, whereas only about 30 points are seen in
Fig. 1(c). This is due to the finite resolution and duration of
the solar data set available for computing the manifolds in
this study and the threshold values chosen for their plots. In
the future, efforts should be made to find other examples of
Lagrangian chaotic saddles with a larger number of points in
observation and numerical simulation of plasma turbulence.
It is pertinent to mention that the intersections between the
unstable and stable manifolds illustrated in Fig. 1(c) cannot be
directly related to the points of a chaotic saddle in stationary or
periodic flows. The repelling Lagrangian coherent structures
(LCS) are obtained from an FTLE field computed from t0 to
t0 + τ , whereas the attracting LCS are computed from t0 to
t0 − τ . Both reflect LCS at t0, but since our flow is not peri-
odic, the dynamics in the forward and backward time intervals
are quite different and the hyperbolic LCS computed over
[t0 − τ, t0] and [t0, t0 + τ ] do not evolve into each other as
t0 is varied. An alternative approach is to extract the repelling
LCS at the initial time t0 − τ and extract the attracting LCS
at t0 + τ , then obtain the repelling LCS at t0 by advecting
the repelling LCS from t0 − τ to t0 under the flow and ob-
tain the attracting LCS at t0 by advecting the attracting LCS
from t0 + τ to t0 under the flow. However, as mentioned by
Farazmand and Haller [34], this second approach has serious
numerical issues. A third approach mentioned by Jánosi and
Tél [35] to obtain manifolds in unsteady flows is not based
on the FTLE fields but on the integration of initial conditions
in special directions in the flow. The unstable manifolds are
obtained by integrating a set of initial conditions on a short
line segment along an eigenvector of a hyperbolic point for-
ward in time from t0 − τ to t0 and the stable manifolds by
integrating another set backward in time from t0 + τ to t0. In
this way, the crossings between manifolds belong to the same

time instant t0. The difficulty here is to accurately find the
appropriate hyperbolic points and their eigenvectors from an
observational field.

We detect objective vortices by computing the elliptic
Lagrangian coherent structures with the aid of Eulerian in-
stantaneous vorticity deviation (IVD) [2,3] of a particle,

IVD(x, t ) = |ω(x, t ) − ω(t )|, (1)

where the vorticity ω = ∇ × u and ω(t ) is the instantaneous
spatial mean of ω, and the Lagrangian averaged vorticity
deviation (LAVD) [2–4,15] as the integrated IVD along a fluid
particle trajectory at the position x0 from an initial time t0 to a
final time t0 + τ ,

LAVDt0+τ
t0 (x0) =

∫ t0+τ

t0

|ω(x(s), s) − ω(s)|ds. (2)

Haller et al. [1] proved that the Eulerian instantaneous vortic-
ity deviation and the Lagrangian averaged vorticity deviation
are objective. A set of laboratory experiments performed with
magnetic-stirrer-generated vortices have provided evidence in
support of the theory of vortices based on the LAVD [36]. We
use the d-criterion introduced by Silva et al. [15] to avoid false
vortex detection. The three-dimensional (3D) simulations of
solar vortex tubes generated by convective flows and shear
flows driven by Kelvin-Helmholtz instability [37] show that
both vertical and horizontal vortex tubes are generated, but
the vertical vortex tubes predominate as the horizontal vortex
tubes are often dragged into the down-flow regions. Hence,
our use of purely horizontal velocity fields in the photosphere
derived from the spacecraft observations, which yield purely
vertical vorticities, is justified.

In Fig. 2(a), we show an example of an Eulerian objective
vortex by computing the Eulerian instantaneous vorticity de-
viation for the initial time of a vortex (M1) at 17:23:57 UT on
2010 November 2 in the same white/magenta box region of
Fig. 1, where the center (boundary) of the Eulerian objective
vortex is indicated by the magenta cross (line), respectively.
In Fig. 2(b), we show an example of a Lagrangian objective
vortex computed by the Lagrangian averaged vorticity devi-
ation for the lifetime of a vortex (M1) from 17:23:57 UT to
22:22:32 UT on 2010 November 2 in the same white/magenta
box region of Fig. 1, where the center (boundary) of the
Lagrangian vortex is indicated by the magenta cross (line), re-
spectively. Note that in contrast to the Eulerian vortex detected
by the Eulerian instantaneous vorticity deviation method in
Fig. 2(a), which is a snapshot at the initial vortex time, the La-
grangian vortex detected by the Lagrangian averaged vorticity
deviation method in Fig. 2(b) is time dependent and averaged
over the vortex lifetime of ≈ 5 h.

Next, we apply the Lagrangian averaged vorticity devia-
tion technique to perform a systematic investigation of the
genesis of persistent objective vortices for the ≈ 22 h Hinode
data, from 08:31:15 UT on 2010 November 2 to 06:19:42
UT on 2010 November 3. First, we identify the initial and
final times for the lifetime of each persistent objective vortex.
Then, we determine the boundary and center of each vortex
by computing the LAVD from its initial time to final time.
Figure 2(c) shows the set of 29 persistent objective vortices
detected for the entire duration, with lifetimes ranging from
28.5 min (vortex R14) to 298.3 min (vortex M1), superposed
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FIG. 2. Objective vortices. (a) IVD computed at the initial time
of vortex M1 at 17:23:57 UT on 2010 November 2, where the
vortex center (boundary) is indicated by the magenta cross (line),
respectively. (b) LAVD computed for the lifetime of vortex M1 from
17:23:57 UT to 22:22:32 UT on 2010 November 2, where the vortex
center (boundary) is indicated by the magenta cross (line), respec-
tively. (c) The boundary of 29 persistent objective vortices detected
by LAVD from 08:31:15 UT on 2010 November 2 to 06:19:42 UT
on 2010 November 3, superposed by the mean line-of-sight magnetic
field for the same time interval consisted of 1 vortex with lifetime
(T ) ≈ 5 h (magenta, M), 5 vortices with 3.5 h > T > 1.6 h (blue,
B), 9 vortices with 1.6 h > T > 0.9 h (green, G), and 14 vortices
with 0.9 h > T > 0.47 h (red, R). The white box marks the same
magnetic mixed-polarity region as Fig. 1 where a sequence of 7
recurrent persistent objective vortices are detected during the entire
time interval.

TABLE I. A sequence of seven recurrent persistent objective
vortices detected from 09:11:46 UT on 2010 November 2 to 05:10:39
UT on 2010 November 3 in a magnetic mixed-polarity region of
supergranular junctions.

t0 t f T (min) I-IVD P-LAVD T-LAVD

R2 09:11:46 10:02:47 51 9.15×10−5 0.30 169.57
R10 10:16:17 10:52:18 36 1.18×10−4 0.23 139.31
B2 11:23:49 14:23:53 180 8.67×10−5 1.08 942.46
M1 17:23:57 22:22:32 298.3 1.93×10−1 1.57 1230
G6 23:43:33 00:43:55 60 1.06×10−4 0.39 299.32
R3 00:09:03 00:58:35 49.5 8.16×10−5 0.23 70.45
B3 02:48:07 05:10:39 142.5 8.25×10−5 0.80 412.23

by the mean line-of-sight magnetic field for the whole time
interval. Table I presents an overview of life-cycle properties
of a sequence of seven recurrent persistent objective vortices
detected in a mixed-polarity region enclosed by the white box
in Fig. 2(c). We list the vortices in the chronological order
of their respective initial time (t0) and also include their final
time (t f ), lifetime (T ), initial value of the Eulerian instanta-
neous vorticity deviation (I-IVD), local maximum value of
the Lagrangian averaged vorticity deviation (P-LAVD), and
the Lagrangian averaged vorticity deviation integrated over
the lifetime (T-LAVD). This information can be useful for
probing the formation and evolution of vortices; e.g., it shows
that the vortex M1 that has the longest lifetime among the
sequence of seven vortices has the largest values of I-IVD,
P-LAVD, and T-LAVD.

In Figs. 3(a), 3(b), respectively, we superpose the un-
stable (stable) manifolds given by Figs. 1(a), 1(b) with the
boundaries (magenta line) of the persistent objective vortices
extracted from Fig. 2(c) whose lifetimes fall into the time
interval of ≈ 11 h of the respective invariant manifolds. In
Figs. 3(c), 3(d), respectively, we superpose the thresholded
unstable (stable) manifolds with the centers (magenta cross)
of the Lagrangian vortices extracted from Fig. 2(c) whose
lifetimes fall into the time interval of ≈ 11 h of the respec-
tive invariant manifolds. The background of Figs. 3(c), 3(d)
displays the line-of-sight magnetic field time averaged over
the respective time interval of the unstable (stable) manifolds.
In Figs. 3(a) and 3(c), the total number of persistent objec-
tive vortices is 16, whereas in Figs. 3(b) and 3(d), the total
number of persistent objective vortices is 13. It follows from
Figs. 3(a) and 3(c) that the persistent objective vortices are
mostly located in the high-value regions of b-FTLE, where the
attracting hyperbolic Lagrangian coherent structures provide
the sinks for photospheric flows.

Analysis of Figs. 3(a) and 3(c) shows that the persistent ob-
jective vortices and intense concentrations of magnetic fluxes
are located in the gap regions of the supergranular Lagrangian
chaotic saddle along its unstable manifold. Although a few
vortices are seen along the stable manifold of Figs. 3(b) and
3(d), it has been shown that all supergranular persistent vor-
tices are located at the ridges of the unstable manifold (see
Fig. 6 in Ref. [4]). Moreover, it is seen in Fig. 3(d) that the
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FIG. 3. Lagrangian view of photospheric turbulence at disk center of the quiet Sun. (a) The vortex boundary (magenta line) of persistent
objective vortices detected from 08:31:15 UT to 19:25:29 UT on 2010 November 2, superposed by the finite-time unstable manifolds of
Fig. 1(a). (b) The vortex boundary of persistent objective vortices detected from 19:25:29 UT on 2010 November 2 to 06:19:42 UT on 2010
November 3, superposed by the finite-time stable manifolds of Fig. 1(b). The vortex center (magenta cross) of persistent objective vortices,
Lagrangian chaotic saddles (red), and the background line-of-sight magnetic field averaged over the time interval of the respective unstable
and stable manifolds, superposed by (c) the thresholded finite-time unstable manifolds (green) with a threshold of 0.3 × 10−4 and (d) the
thresholded finite-time stable manifolds (blue) with a threshold of 0.25 × 10−4. The white box marks the same magnetic mixed-polarity region
as in Figs. 1 and 2.

vortex center of these vortices is away from the Lagrangian
chaotic saddles. Hence, these vortices are also located in
the gap regions. In the white box region of Figs. 1(a), 3(a),
and 3(c) and the magenta box region of Fig. 1(c), we see
that the unstable manifolds exhibit twisted folding motions
resulting from the velocity shear driven by the converging
down drafts from various nearby supergranular cells. These
folded unstable manifolds attract plasma particles to the spiral
regions of photospheric flow, giving rise to the recurrence
of vortices seen in the magnetic mixed-polarity region of
Fig. 3(c). The stable manifolds transport particles in the di-
rection of the hyperbolic points of a chaotic saddle, where
the particles undergo a transient chaotic motion before being
transported to the direction of the unstable manifolds. This
mixing process mediated by the Lagrangian chaotic saddles
is the key to the genesis of persistent objective vortices as

elucidated by numerical plasma simulations, which show that
an elliptic Lagrangian coherent structure (vortex) is confined
by the transport barriers consisted of attracting and repelling
hyperbolic Lagrangian coherent structures (see Figs. 1 and
4 in Rempel et al. [3]). The visualization of the folded
structures of the unstable manifolds in Figs. 1(a), 3(a), and
3(c) are possible thanks to the long duration computation of
≈ 11 h carried out in this paper. In contrast, this important
feature of vortical motions is missing in the unstable mani-
folds computed for a shorter duration of ≈ 7 h (see Fig. 4(b) of
Ref. [4]).

In conclusion, we presented observational evidence of
Lagrangian chaotic saddles in plasmas, which confirms the
previous theoretical predictions that chaotic saddles play a
significant role in the nonlinear dynamics of stellar magne-
toconvection [23,27] and in the genesis of turbulence in fluids
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and plasmas [17,18]. Our dynamical systems approach paves
the way for further detection of Lagrangian coherent struc-
tures and Lagrangian chaotic saddles in laboratory, space, and
astrophysical plasmas, as well as in fluids in general. This
paper only considered 2D velocity fields due to the restric-
tion of spacecraft observations. Future studies of Lagrangian
chaotic saddles can be extended to 3D velocity and magnetic
fields in numerical simulations and experimental observations
of plasmas. Vortices are associated with a wealth of dynamical
phenomena at supergranular junctions in the quiet Sun such as
bright points, jets, minifilaments, microflares, and minicoro-
nal mass ejections [26]. Our nonlinear dynamics methodology
can be readily applied to study the formation and development
of persistent vortices in the vicinity of the polarity inversion
lines in active regions to improve the monitoring and fore-
casting of solar flares and coronal mass ejections [25,38,39],

as well as to study atmospheric and oceanic cyclogenesis, thus
providing a powerful tool for the prediction of space weather
[40], weather [41], and ocean dynamics [42].
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