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Abstract— This paper presents a novel 3D Fast Factorized 

Back-Projection (FFBP) algorithm that is based on an extension 

of the quadtree approach. A flexible 3D tree structure is 

generated from a modified Morton order or Z-order curve, a 

recursive space-filling curve that is suitable for FFBP 

algorithms. This paper presents, as well, an original method for 

defining sub-apertures. The proposed algorithm can be applied 

to any flight path and is about 90 % faster than the direct back-

projection, yielding high-resolution 3D images with low phase 

errors and high degrees of coherence. 
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I. INTRODUCTION 

In recent years, the scientific community has seen a 
growing interest in Synthetic Aperture Radar (SAR) systems 
carried by drones. This rising technology could support a 
variety of flight trajectories for many applications, including 
tomographic imaging [1, 2]. Therefore, a suitable processing 
algorithm would be the time domain Back-Projection (BP), 
which provides good focusing quality with arbitrary flight 
paths. However, the main disadvantage of the BP algorithm is 
its high computational burden. Fortunately, Fast BP 
algorithms have been developed to reduce processing time. 

In 1996, McCorkle and Rofheart [3] proposed a solution 
based on a divide-and-conquer strategy that results in a 
quadtree data structure. The root node represents the original 
SAR data that covers the whole imaging area. At each 
recursion, parent sub-apertures are combined to form 
progressively longer children sub-apertures, as though 
building antenna-array beam patterns that cover increasingly 
smaller sub-images with each recursion. The phase center of 
each child sub-aperture is defined by the weighted mean 
position of all parent phase centers that comprise it.  

In 2003, Ulander et al. [4] presented the Fast Factorized 
Back-Projection (FFBP) algorithm. Instead of applying 
cartesian coordinates, it represents image data in local polar 
coordinates to reduce the number of operations. In addition, 
that algorithm simplifies calculations by assuming a linear 
flight path. In this way, it is applicable for ultrawideband SAR 
systems, for which it can deal with significant deviations from 
a linear trajectory. 

These methods can also be applied to circular trajectories, 
provided that some modifications are introduced. In [5], the 
circular flight track is approximated by equilateral polygons, 
and then the FFBP algorithm [4] is adjusted to this new 
configuration. In [6], the sub-apertures are defined by 

weighted mean positions, as in [3], but the phase centers are 
described in polar coordinates instead of cartesian 
coordinates.  

Recently, the FFBP algorithm has been extended to 3D by 
using a set of conversions between sub-apertures whose data 
are represented in spherical coordinates [7]. That algorithm 
was designed for downward-looking sonar systems that move 
along approximately linear paths. Although it achieves a 
significant reduction in processing time, an adaptation to 
arbitrary trajectories would not be straightforward. 

This work presents a 3D FFBP algorithm that was 
developed through an extension of the quadtree structure, in 
cartesian coordinates, using a modified Morton order curve 
[8] to perform data mapping. To the best of our knowledge, 
the method for defining sub-apertures introduced in this work 
is an original one. The proposed algorithm is applicable for 
any flight paths. 

II. 3D FAST FACTORIZED BACK-PROJECTION 

The 3D FFBP presented in this paper is a modification of 
the McCorkle and Rofheart’s algorithm [3], with the 
alterations introduced henceforth. In particular, the 3D sub-
images are created by employing a modified Morton order 
curve [8], and the sub-apertures are defined with a unique 
method based on data mapping. 

A. Generation of 3D sub-images 

For a 3D FFBP, the most evident extension of the quadtree 
structure would be an octree. One solution for organizing data 
in a quadtree structure that can be readily expanded to an 
octree is the Morton order curve [8, 9]. It was initially created 
for mapping 2D information in 1D data, and it is built by 
recursively dividing one square into four squares, arranging 
them in a Z-shaped manner, that is why it is also known as the 
Z-order curve. Thanks to this recursive construction, it can be 
easily applied to FFBP algorithms. 

Furthermore, SAR images often have non-uniform 
resolutions. Even SAR Tomography techniques that provide 
high-resolution 3D images achieve better resolutions in the 
horizontal (x, y) plane than in the vertical z-direction [10, 11]. 
Hence, more flexible tree structures could be appealing for 3D 
SAR applications. 

This work proposes a modified Morton order curve that 

divides each parent sub-image into Dpx  Dpy  Dpz child sub-
images, where Dpx, Dpy and Dpz are the number of divisions in 
the x-, y- and z-directions, respectively. Fig. 1 shows the first 
and second recursions for the modified Morton order curve 

with a 3  3  2 partition. 
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At the end of the 3D FFBP algorithm, this 1D data is 
mapped back into 3D information by using recurrent 

sequences. Let Dp = Dpx  Dpy  Dpz be the total number of 
divisions at each recursion and let qx be the sequence 
associated with the x-direction, thus: 

 qx[0] = 0  (1) 

 qxnDpx + i = Dp qxn + i (2) 

where i = 0, …, Dpx – 1. The sequences related to the y- and z-

directions, namely qy and qz, are created using a similar 

procedure.  

Then, the 3D indexing I3D is obtained from: 

 I3D = qx + Dpx qy + Dpx Dpy qz  (3) 

The choice Dpx = Dpy = 2 and Dpz = 1 produces the original 
Morton order curve. 

B. Definition of sub-apertures 

The proposed method for defining sub-apertures is 
illustrated in Fig. 2. It is based on data mapping and does not 
depend on the flight path geometry. Let r0 be the array of the 
original SAR positions (at the root node) and let L be the 
number of parent sub-apertures that are combined to form a 
child sub-aperture at each iteration. There are two particular 

 

(a) 
 

(b) 
 

(c) 

 

(d) 
 

(e) 
 

(f) 
Fig. 1. The modified Morton order curve with a 3  3  2 partition: (a-c) the first recursion and (d-f) the second recursion. The columns (a,d), (b,e) and (c,f) 

show, respectively, perspective, top and front views. 

 

(a) 

 

(b) 

Fig. 2. Definition of sub-apertures with (a) L = 3 and (b) L = 2. Dashes represent the original SAR positions (r0), circles indicate the midpoints (0) between 

two consecutive SAR positions, and diamonds symbolize the sub-aperture phase centers (rc). 
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cases and a general case for defining rc, the array of phase 
centers in the child node c.  

1) L is an odd number: When L is odd, the sub-aperture 

phase centers rc are always a subset of the original SAR 

positions r0, as depicted in Fig. 2(a). What is more, if rp is the 

array of parent phase centers corresponding to the previous 

node, then rc is also a subset of rp. Therefore, either of the 

following expressions can be used: 

 rc[k] = r0[(Lc – 1)/2 + kLc]  (4) 

 rc[k] = rp[(L – 1)/2 + kL] (5) 

where k = 0, …, Nc – 1, and Nc is the number of aperture 

elements in the child node. 

2) L is a power of 2: Let 0 be an array composed of all 

the points that fall halfway between two successive SAR 

positions in r0. When L is a power of 2, the set of sub-aperture 

phase centers rc is always a subset of 0, as seen in Fig. 2(b). 

Then, rc can be expressed as: 

 rc[k] = 0[Lc/2 – 1 + kLc] (6) 

where k = 0, …, Nc – 1. In this way, the calculation of mean 

positions is only performed in the root node, when deviation 

errors are the least significant. 

3) General case: Let 0 be the interleaved combination 

of both r0 and 0 (see Fig. 2). So, for any value of L, the set 

of sub-aperture phase centers rc is always a subset of 0: 

 rc[k] =  0[Lc – 1 + 2kLc]  (7) 

where k = 0, …, Nc – 1. In practice, 0 can be obtained 

directly from r0 using an interpolation function. Again, this 

interpolation is only performed in the root node. 

C. Other modifications 

Just as in [3], at a given iteration, range samples are taken 

along the lines that connect each child phase center rc[k] to 

the center of each child sub-image. Though, unlike [3], the 

number of range bins is constant for each node. The reason is 

to ensure full coverage, so all samples within the sphere that 

circumscribes the 3D image are considered. In [6], full 

coverage is achieved by calculating distances on the 

diagonals of the sub-images, but then 2D (or 3D, in this case) 

interpolations would be required for combining sub-

apertures. 

Finally, to ensure the coherent summation of sub-aperture 

data for any flight trajectory, we included the phase 

compensation term presented in [12], thus reducing artifacts 

and improving image quality. Thereby, the child radar data sc 

is generated from the parent radar data sp as follows [3, 12]:   

 

 

(8) 

 
 

(9) 

where 0 is the carrier wavelength; c, p, k, l and m indicate, 

respectively, a child node, a parent node, a child sub-aperture, 

a parent sub-aperture, and the range sample. c,k,m is the range 

from the child phase center rc[k] to the mth range bin in 

sc[k,m]; whereas c,k,l,m is the range from the parent phase 

center rp[l] to that same range bin. The floating-point index 

c,k,l,m is a function of c,k,l,m and the values for sp[l,c,k,l,m] are 

calculated with linear interpolation. The index set c,k lists 

which parent sub-apertures compose the kth child sub-

aperture. 

III. SIMULATION RESULTS 

A. Point spread function 

The first simulated scenario consists of a drone-borne 

SAR system, like the one presented in [1, 13], operating at P-

band, and performing a helical trajectory with constant radius 

and constant speed, as depicted in Fig. 3. There are nine 

scatterers: one at the origin of an East-North-Up system, and 

the others at the vertices of a cube with sides 8 m long, 

centered at the origin. Table 1 shows the simulated radar 

acquisition parameters. 

TABLE I.  SIMULATED RADAR ACQUISITION PARAMETERS 

Parameters Values Units 

Carrier wavelength 0.75 m 

Bandwidth 150 MHz 

Range resolution 1 m 

Pulse repetition frequency 200 Hz 

Flight path radius 180 m 

Height at the top of the flight path 120 m 

Height at the bottom of the flight path 80 m 

Number of helical turns 5 - 

Radar speed 6.5 m/s 

The 3D FFBP is setup with six iterations in which the sub-

apertures are combined in groups of L = 3, and the range 

sampling is 0.125 m. At the root node, there are 174,960 

𝑠𝑐[𝑘,𝑚] = 𝑠𝑝[𝑙, 𝜈𝑐,𝑘,𝑙,𝑚]∆𝛷𝑐,𝑘,𝑙,𝑚
𝑙𝜖𝛬𝑝,𝑘

 

∆𝛷𝑐 ,𝑘 ,𝑙,𝑚 = 𝑒𝑥𝑝  −𝑗
4𝜋

𝜆0
(𝛹𝑐 ,𝑘 ,𝑚 − 𝛤𝑐 ,𝑘 ,𝑙,𝑚)  

 

Fig. 3. Simulated helical flight path.  
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(36  240) aperture positions, and the imaged volume is 

12.15  2.15  14.4 m3. The first iteration builds the initial 

sub-image; the following four iterations perform 3  3  2 

partitions, as shown in Fig. 1; and the last iteration divides 

each sub-image into 3  3  3 smaller ones. Finally, the 

remaining 240 data blocks are coherently combined. 

The 3D output image has 243  243   voxels of 

dimension 0.05  0.05  0.3 m3. Fig. 4(a) shows the 

distribution of all nine scatterers after processing with the 3D 

FFBP and Fig. 4(b) shows a closer caption of the central 

scatterer. The opaque red curves are – 3 dB isosurfaces, and 

the translucent yellow ones are – 13 dB isosurfaces. 

Fig. 5 displays the point spread function for the 3D FFBP 

and the BP algorithms. It can be seen that the plot curves are 

nearly the same for both algorithms. The (x,y) plane has a 

refined resolution of 0.16 m, but a poor peak-to-sidelobe ratio 

(PSLR) of – 9.1 dB, whereas the z-direction presents a coarser 

resolution of 1.53 m with a better PSLR of – 28.7 dB. 

Furthermore, the mean phase error is 10-4 rad, and the 

standard deviation is 0.12 rad, which is more than three times 

lower than the recommended threshold of /8 rad [4]. The 

mean and the standard deviation of the magnitude error are, 

respectively, 0.1 dB and 0.9 dB. The degree of coherence 

between the resulting images from the 3D FFBP and the BP 

algorithm is 0.9993. If the two images were entirely identical, 

this parameter would be equal to one [14]. Table 2 

summarizes these results. 

TABLE II.  POINT SPREAD FUNCTION – SIMULATION RESULTS 

Parameters Values Units 

3 dB resolution in the (x,y) plane 0.16 m 

3 dB resolution in the z-direction 1.53 m 

PSLR in the (x,y) plane – 9.1 dB 

PSLR in the z-direction – 28.7 dB 

Mean phase error 10-4 rad 

Standard deviation of the phase error 0.12 rad 

Mean magnitude error 0.1 dB 

Standard deviation of the magnitude error 0.9 dB 

Degree of coherence 0.9993 - 

Processing time – 3D FFBP 3.45 h 

Processing time – BP 39.09 h 

 

(a) 

 

(b) 

Fig. 4. The 3D output image processed with the 3D FFBP: (a) – 3 dB isosurfaces for the entire imaged volume; (b) – 3 dB isosurface in opaque red and – 13 

dB isosurfaces in translucent yellow for the target at the origin. 

 

(a) 

 

(b) 

 

(c) 

Fig. 5. Comparison between the 3D FFBP and the BP algorithms. Point spread function: normalized magnitude in dB vs. (a) x, (b) y, and (c) z. 
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The low phase error is due, in part, to the choice of the 

sub-images dimensions, as the analysis provided by Ulander 

et al. [4] suggests. However, without (9), the results would be 

far worse. The standard deviation of the phase error would be 

1.63 rad, yielding a coherence of 0.29. 

All algorithms were written in MATLAB R2018a without 

applying any parallel computing functions. All simulations 

were executed on an Intel(R) Core(TM) i7-7700 CPU (3.60 

GHz) with 64 GB RAM. The processing time with the 3D 

FFBP was 3.45 hours (~0.14 days), while the BP took 39.09 

hours (~1.6 days). This difference represents a reduction of 

11.3 times (91.1 %) in computation time. This result concerns 

the 3D FFBP employing the general case (7), which was 5.5 

minutes faster than using (5), and 19.1 minutes faster than 

adopting the usual method of calculating weighted mean 

positions. The RAM usage did not exceed 65 % in any of the 

simulations. 

B. Random point scatterers 

The second simulated scenario also uses the helical flight 

path depicted in Fig. 3 with the radar acquisition parameters 

of Table 1, but a random phase error is added to the simulated 

radar data to represent motion data inaccuracies. The total 

relative position error of a drone-borne SAR system was 

measured in [13] and had a standard deviation of 7.4 mm, 

which corresponds to a phase error standard deviation of 0.12 

rad at the 0.75 m wavelength. Thus, the simulated radar data 

is perturbed by adding a normally distributed phase error with 

zero mean and the standard deviation calculated above. 

Real radar cross-section data can be modeled as a 

distribution of ideal isotropic point scatterers [15]. For that 

reason, a random distribution of point scatterers is adopted 

for this scenario. The initial target grid has 81  81   points 

with 0.15 m  0.15 m  1.5 m spacing, wherein each position 

corresponds to a Bernoulli random variable with probability 

0.001 to be a point scatterer. The resulting distribution is 

illustrated in Fig. 6(a) and 6(b), and it has a total of 85 point 

scatterers. 

The 3D FFBP set up is identical to the previous scenario, 

and like before, the output image has 243  243   voxels 

with a 0.05  0.05   m3 resolution. The – 6 dB isosurfaces 

are displayed in Fig. 6(c) and 6(d). Due to mutual interference 

between the point scatterers, their resulting amplitudes on the 

processed data are not uniform. So, the value – 6 dB was 

chosen rather than – 3 dB in order to provide a clearer 

depiction of all point scatterers. 

Fig. 7 shows a plane section of the 3D FFBP and the BP 

output images. It can be noticed that the two figures are nearly 

identical, thus suggesting that both algorithms have been 

evenly affected by the added random phase error. The degree 

of coherence between the 3D FFBP and the BP output images 

is 0.9992. The mean and the standard deviation of the phase 

error are 5  10-5 rad and 0.10 rad, respectively. The mean 

magnitude error is 0.1 dB, and the standard deviation is 0.8 

dB. The processing time was 3.66 hours (~0.15 days) for the 

3D FFBP and 39.71 hours (~1.7 days) for the BP, which 

corresponds to a reduction of computation time of 10.8 times 

(90.8 %). A summary is provided in Table 3. 

 

TABLE III.  RANDOM POINT SCATTERERS – SIMULATION RESULTS 

Parameters Values Units 

Mean phase error 4  10-5 rad 

Standard deviation of the phase error 0.10 rad 

Mean magnitude error 0.1 dB 

Standard deviation of the magnitude error 0.8 dB 

Degree of coherence 0.9992 - 

Processing time – 3D FFBP 3.66 h 

Processing time – BP 39.71 h 

 

IV. CONCLUSION 

The here presented 3D FFBP algorithm achieves shorter 

processing times than the direct BP, while still providing 

high-quality images for any flight path. McCorkle and 

Rofheart’s quadtree approach was expanded by utilizing an 

adapted version of a traditional space-filling curve, called the 

Morton order curve [8, 9], for producing flexible 3D tree 

structures. The proposed algorithm also features an original 

method for generating sub-apertures based on a data mapping 

strategy, which is faster than recursively calculating weighted 

mean positions. 

The 3D FFBP algorithm has been tested in two different 

simulation scenarios inspired by drone-borne SAR systems 

[1, 13] and data acquisition techniques that produce high-

resolution 3D images [10, 11]. Tables 2 and 3 provide an 

outline of the simulation results. The 3D FFBP achieved a 10-

fold reduction in processing time without loss of image 

quality. Indeed, the degree of coherence between the 3D 

FFBP and BP images was nearly equal to one. In addition, 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 6. Comparison between input and output target distributions: (a,b) 

the input point scatterers and (c,d) the – 6 dB isosurfaces for the 3D FFBP 

output image. The columns (a,c) and (b,d) show, respectively, the top and 

perspective views. 
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the standard deviation of the phase error was considerably 

smaller than the typical /8 rad threshold used for assessing 

FFBP algorithms. The proposed sub-aperture definition 

method was 8 % faster than the usual computation of 

weighted mean positions. 

The time reduction could be further increased if another 

sampling strategy was used, possibly at the expense of a 

higher phase error. To take into account the spheres that 

circumscribe each sub-image helped to ensure excellent 

image quality, as the results have demonstrated. However, it 

is not a very efficient approach. In [12], instead of 

partitioning the range data, a fixed number of pivots is used 

for combining sub-apertures. The range data are processed all 

at once, using FFT interpolation to increase efficiency. 

In future works, we shall improve the range sampling 

strategy to further enhance the 3D FFBP algorithm. 

Moreover, since drone-borne SAR systems seem to be a 

promising technology for performing SAR tomography, we 

shall continue exploring its suitability for this type of 

application. 

ACKNOWLEDGMENT 

The authors would like to thank João Roberto Moreira 

Neto and Luciano Prado de Oliveira for their support and 

assistance. 

REFERENCES 

[1] L. Moreira et al., “A drone-borne multiband DInSAR: Results and 
applications,” in 2019 IEEE Radar Conference, RadarConf 2019, 
2019. 

[2] S. Dill, E. Schreiber, M. Engel, A. Heinzel, and M. Peichl, “A drone 
carried multichannel synthetic aperture radar for advanced buried 
object detection,” in 2019 IEEE Radar Conference, RadarConf 2019, 
2019. 

[3] J. W. McCorkle and M. Rofheart, “Order N^2 log(N) backprojector 
algorithm for focusing wide-angle wide-bandwidth arbitrary-motion 
synthetic aperture radar,” in Radar Sensor Technology, 1996, no. 2747, 
pp. 25–36. 

[4] L. M. H. Ulander, H. Hellsten, and G. Stenström, “Synthetic-Aperture 
Radar Processing Using Fast Factorized Back-Projection,” IEEE 
Trans. Aerosp. Electron. Syst., vol. 39, no. 3, pp. 760–776, Jul. 2003. 

[5] O. Ponce et al., “Fully Polarimetric High-Resolution 3-D Imaging With 
Circular SAR at L-Band,” IEEE Trans. Geosci. Remote Sens., vol. 52, 
no. 6, pp. 3074–3090, Jun. 2014. 

[6] X. Song and W. Yu, “Processing video-SAR data with the fast 
backprojection method,” IEEE Trans. Aerosp. Electron. Syst., vol. 52, 
no. 6, pp. 2838–2848, Dec. 2016. 

[7] T. M. Marston, D. S. Plotnick, and K. L. Williams, “Three dimensional 
fast factorized back projection for sub-sediment imaging sonars,” in 
OCEANS 2019 MTS/IEEE Seattle, OCEANS 2019, 2019. 

[8] G. M. Morton, “A computer oriented geodetic data base and a new 
technique in the file sequencing,” 1966. 

[9] M. Connor and P. Kumar, “Fast construction of κ-nearest neighbor 
graphs for point clouds,” IEEE Trans. Vis. Comput. Graph., vol. 16, 
no. 4, pp. 599–608, 2010. 

[10] O. Ponce, P. Prats-Iraola, R. Scheiber, A. Reigber, and A. Moreira, 
“First Airborne Demonstration of Holographic SAR Tomography With 
Fully Polarimetric Multicircular Acquisitions at L-Band,” IEEE Trans. 
Geosci. Remote Sens., vol. 54, no. 10, pp. 6170–6196, Oct. 2016. 

[11] D. J. Sego, H. Griffiths, and M. C. Wicks, “Waveform and Aperture 
Design for Low-Frequency RF Tomography,” IET Radar, Sonar 
Navig., vol. 5, no. 6, p. 686, 2011. 

[12] H. Zhang, J. Tang, R. Wang, Y. Deng, W. Wang, and N. Li, “An 
Accelerated Backprojection Algorithm for Monostatic and Bistatic 
SAR Processing,” Remote Sens., vol. 10, no. 1, p. 140, Jan. 2018. 

[13] D. Luebeck et al., “Drone-borne Differential SAR Interferometry,” 
Remote Sens., vol. 12, no. 5, p. 778, Feb. 2020. 

[14] I. H. Woodhouse, Introduction to Microwave Remote Sensing, 1st ed. 
Speckled Press, 2015. 

[15] E. J. Hughes and M. Leyland, “Using multiple genetic algorithms to 
generate radar point-scatterer models,” IEEE Trans. Evol. Comput., 
vol. 4, no. 2, pp. 147–163, Jul. 2000. 

 

 

(a) 

 

(b) 

Fig. 7. Plane section for the 3D FFBP and BP results. Normalized magnitude in dB at z = 0 m for (a) the 3D FFBP and (b) the BP output images. 
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