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Abstract: Atmospheric downward longwave radiation flux (L↓) is a variable that directly influences
the surface net radiation and consequently, weather and climatic conditions. Measurements of L↓
are scarce, and the use of classical models depending on some atmospheric variables may be an
alternative. In this paper, we analyzed L↓measured over the Brazilian Pampa biome. This region
is located in a humid subtropical climate zone and characterized by well defined seasons and well
distributed precipitation. Furthermore, we evaluated the performance of the eleven classical L↓
models for clear sky with one-year experimental data collected in the Santa Maria experimental
site (SMA) over native vegetation and high relative humidity throughout the year. Most of the L↓
estimations, using the original coefficients, underestimated the experimental data. We performed
the local calibration of the L↓ equations coefficients over an annual period and separated them into
different sky cover classifications: clear sky, partly cloudy sky, and cloudy sky. The calibrations
decreased the errors, especially in cloudy sky classification. We also proposed the joint calibration
between the clear sky emissivity equations and cloud sky correction function to reduce errors and
evaluate different sky classifications. The results found after these calibrations presented better
statistical indexes. Additionally, we presented a new empirical model to estimate L↓ based on
multiple regression analysis using water vapor pressure and air temperature. The new equation well
represents partial and cloudy sky, even without including the cloud cover parameterization, and was
validated with the following five years in SMA and two years in the Cachoeira do Sul experimental
site (CAS). The new equation proposed herein presents a root mean square error ranging from 13 to
21 Wm−2 and correlation coefficient from 0.68 to 0.83 for different sky cover classifications. Therefore,
we recommend using the novel equation to calculate L↓ over the Pampa biome under these specific
climatic conditions.

Keywords: atmospheric downward longwave radiation; Pampa biome; statistical analyses; modeling

1. Introduction

Atmospheric downward longwave radiation flux (L↓) is an important component of
radiative balance and a relevant variable for meteorological and climate studies [1]. The L↓
is the thermal infrared radiation emitted from the atmosphere mainly by the H2O, CO2, O3
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molecules, and aerosols, and its maximum energy is in the longer wavelengths at about
10 µm [2]. Due to the wavelength range (4–100 µm) and intense interaction with water
vapor in the atmosphere, which varies widely during the day, seasons, and from one region
to another, L↓ estimates are highly sensitive to the amount of water in the atmosphere [3].

Theoretically, L↓ is obtained from Stefan–Boltzmann law, which states that all bodies
emit energy in the form of radiation. According to this law, the radiation flux depends
solely on the emissivity and the fourth power of the body’s absolute temperature. However,
it is not easy to determine L↓ due to difficulties to obtain the emissivity and temperature of
the entire atmosphere (air column above the observer). Recent studies have suggested L↓
measurements to be performed using remote sensing and machine learning [4–9]. How-
ever, empirical and physical models are classically used to estimate L↓ and widely used
worldwide. Physical models are based on the atmospheric radiative transfer phenom-
ena, in which detailed profiles of atmospheric constituents are required, despite often
being unavailable [10,11]. On the other hand, empirical models use atmospheric variables
derived from surface-level observational data [12–20], which are specifically for definite
atmospheric conditions and in general, need to be locally calibrated [21,22]. This hypothe-
sis is justified by 90% of the L↓ coming mainly from the lower layers of the atmosphere
(800–1600 m above the surface) where the molecules’ concentration is high [23,24]. Most
L↓ models are conceived under clear sky conditions, in which clear sky effective emissivity
(εe) depends mainly on water vapor pressure near the surface (ea) and air temperature
(Ta). However, cloud presence increases L↓ reaching the surface [25]. Through numer-
ous methods, various studies have combined clear sky emissivity classical models with
cloud sky corrections using algorithms based on cloud cover or solar index to estimate
L↓ [12,19,22,26–34]. Flerchinger et al. [26] evaluated the combination of 13 clear sky emis-
sivity models over ten cloud sky correction models with two algorithms for sky cover
fraction (or cloud cover fraction) using data from sites across North America and China.
Marthwes et al. [28] combined eighteen models for downward longwave radiation based
on air emissivity and with six different cloud sky fraction models analyzing a dataset
over the tropical forest in eastern Amazonia. These studies demonstrated the significant
variability of results throughout the regions and models, but they do not performed a local
model calibration. In the present study, we propose a joint calibration between clear sky
emissivity and cloud sky correction models to estimate L↓ using a basic structure based
on the formulation proposed by Maykurt and Church [35], Jacobs [36], Iziomon et al. [34],
Sugita and Brutsaert [37], among others. The analysis was carried out using eleven classic
clear sky equations for atmospheric downward longwave radiation and combined with
three sky cover fraction functions. This methodology is expected to estimate L↓ more
accurately since emissivity equations, in general, are obtained empirically, and it is believed
that testing many combinations with sky cover fraction may generate better parameteriza-
tion for applications in different areas of research, including agriculture, climate and solar
energy. Additionally, we evaluated L↓ estimation results in different specific daily sky cover
classifications: clear sky, partly cloudy sky, and cloudy sky. Moreover, a new empirical
equation for emissivity under clear sky conditions is defined using air temperature and
water vapor pressure.

We evaluated all these estimates over a set of experimental data obtained in native
vegetation over the Brazilian Pampa biome. The Pampa biome is characteristic of south-
ern Brazil, Argentina and Uruguay, although it is still not well characterized by L↓. In
southern Brazil, this biome presents mostly grassland vegetation interspersed with gallery
forests [38]. The subtropical climate is characterized by well distributed precipitation
throughout the year (i.e., no dry or wet seasons), which favors cattle production and
agriculture. Therefore, it is necessary to study L↓ and develop local models that can be
utilized for both meteorological and agricultural models.
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2. Materials and Methods
2.1. Site and Instrumentation

The data used in this study were collected in two experimental sites located in the
Pampa biome in Southern Brazil that were roughly 60 km away distant from each other
(Figure 1). The Santa Maria site (SMA) is located in an area of native grassland that belongs
to the Federal University of Santa Maria (UFSM) in Santa Maria, Rio Grande do Sul State
(29◦ 43′ 26.76” S and 53◦ 45′ 34.92” W, altitude of 88 m). This site is commonly used for
cattle production. The Cachoeira do Sul site (CAS) is located on a flooded rice paddy field
in Cachoeira do Sul, Rio Grande do Sul State (30◦ 16′ 37.59” S and 53◦ 8′ 52.25” W, altitude
of 40.5 m). The rice is cultivated from November to April and the surface remains fallow
for the rest of the year. The climate in the experimental sites is classified as subtropical
humid (Cfa, Köppen climate classification; [39]), with high summer temperatures (~35 ◦C)
and low winter temperatures, which can even reach negative temperatures and with the
occurrence of frost. The precipitation for both sites is well distributed year-round (between
83 and 157 mm by month (1961–1990 according to Brazilian National Meteorological Service
(INMET) [40], and the daily average of relative humidity is high throughout the year [41].
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Figure 1. Location of experiment areas in the Pampa biome in southern Brazil—Santa Maria (SMA)
and Cachoeira do Sul (CAS).

In the SMA site, the L↓ and global solar radiation (Rg) were measured by the net
radiation sensor (CNR4, Kipp & Zonen, Deft, The Netherlands), while the relative humid-
ity (RH) and air temperature (Ta) were measured using the thermo-hygrometer sensor
(HMP155, Vaisala, Finland), all at the height of 3 m. The data period used in this study
was from January 2014 to December 2019. More details on the SMA site are described in
Zimmer et al. [42] and Rubert et al. [43].

In the CAS site, the L↓ was measured by a pyrgeometer (CG1, Kipp & Zonen, Deft,
The Netherlands) and Rg by a pyranometer (LI200S, LI-COR Inc., Lincoln, NE, USA) at 6 m
height and RH and Ta by a thermo-hygrometer (CS215-L, Campbell Scientific Inc., Logan,
UT, USA) at 3 m height. Data were collected between 20 February 2013 and 19 February
2016. More details on the CAS site are described in Diaz et al. [44] and Souza et al. [45].
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Measurements were processed in 30 min in both sites. Actual vapor pressure (ea, hPa)
was obtained according to Allen et al. [46]:

ea (Ta, RH) =
(

6.1078 exp[ 17.27 Ta
Ta + 237.3 ]

)(RH
100

)
(1)

where: Ta is the air temperature (◦C) and RH is the relative humidity (%).

2.2. Clearness Index

The daily clearness index of the atmosphere (Kt) over shortwave wavelengths (0.3–
0.7 µm) represents the atmospheric transmissivity and is defined as the ratio between
the daily integrated shortwave radiation received on surface-level (measured global solar
radiation, Rg) and the daily shortwave radiation coming from the sun that is theoretically
received at the top of the atmosphere (R0) (extraterrestrial solar radiation) [2].

According to Kuye and Jagtap [47], the daily clearness index is used to classify the
daily sky cover as cloudy sky (CD) for Kt values between 0 and 0.35, partly cloudy sky (CP)
for Kt values between 0.35 and 0.65, and clear sky (CS) for Kt values between 0.65 and 1.
We adopt such classification in the present work.

2.3. Evaluated Parameterizations

The longwave radiation emitted from the atmosphere to the surface can be estimated
by the Stefan–Boltzmann equation:

L ↓ = εeσTa
4 (2)

where: σ is the Stefan–Boltzmann constant (5.67 × 10−8 Wm−2 K−4) and εe and Ta (K)
are the effective emissivity and the temperature of the atmosphere. The temperature and
emissivity are integrated quantities over an atmospheric column above the ground that
emits longwave radiation. However, εe and Ta are typically estimated from ground-based
meteorological observations in most models for L↓ based on Equation (2). In general,
the methods to estimate the effective emissivity εe corresponding to the atmospheric
emissivity under clear sky conditions are based on the ambient temperature and water
vapor pressure (εCLR (Ta, ea)) [12–18,20]. The clouds increase the amount of L↓ reaching
the surface by changing the emissivity and temperature of the atmosphere. Therefore,
the emissivity should be able to include the effects of the cloud (i.e., effects of the sky
cover), and various equations have attempted to estimate the increased L↓ produced by
clouds [27,35–37,48–50].

In order to obtain the effective emissivity of the atmosphere for all sky cover conditions,
a general form for εe combines the atmospheric emissivity under clear sky conditions
(εCLR (Ta, ea)) with the cloud sky correction (g(Kt)). To obtain the cloud sky correction,
many models of sky cover fraction have been proposed, which is also called cloud cover
fraction [27,48,51–55]. To simplify, we suggest the cloud sky correction function using the
clearness index (Kt). Thus, the effective emissivity can be written as

εe (Ta, ea, Kt) (3)

defining:
g(Kt) = 1 + µ[C(Kt)]

λ (4)

where µ and λ are parameters to be adjusted (hereafter called coefficients), and C(Kt) is
the sky cover fraction function (as defined in Marthews et al. [28]). The term g(Kt) in
Equation (3) guarantees increased emissivity when clouds are present, representing a cor-
rection function that considers sky coverage. Equation (4) is based on the models proposed
by Iziomon et al. [34], Jacobs [36], Maykut and Church [35], Sugita and Brutsaert [37] and
Choi et al. [56]. Therefore, if µ is zero, Equation (3) represents the clear sky emissivity; in
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other cases, the influence of cloudiness will be analyzed from the joint calibration of the
sky’s emissivity equations (εCLR (Ta, ea)) and the sky cover correction function g(Kt).

Some equations for εCLR and its original coefficients are presented in Table 1. It is
important to note that each coefficient has different units to make atmospheric emissiv-
ity dimensionless. Equations EAN [12,18,19,57] only use ea in their formulation, while
EST [12,13] uses Ta, and EBT [7], EST [8], EID [9], EPR [30], and EKZ [48] use both meteoro-
logical variables. The EBT and EPR models are physically based models. The EBT model is
based on the analytic solution of the Schwarzschild equation for the standard atmospheric
lapse rates of Ta and ea, and the EPR model was based on radiative transfer simulations.
The other models were proposed empirically by using observations of longwave radiation
for definite atmospheric conditions. Both physical and empirical model parameters and
performance are significantly affected by geographical location and local atmospheric
conditions and require site-specific validation and parameterization [57].

Table 1. Equations for atmospheric emissivity under clear sky conditions, εCLR (Ta, ea), and original coefficients. Ta is the air
temperature (K) and ea is the water vapor pressure (hPa).

Original Coefficients

Reference Code εCLR (Ta, ea) a1 a2 a3

Ångströn (1915) [58] EAN a1 − a2 10−a3.ea 0.83 0.18 0.067
[hPa−1]

Brunt (1932) [59] EBR a1 + a2 (ea)
1/2 0.52 0.065 [hPa−1/2] -

Swinbank (1963) [60] ESW a1 T2
a 9.36 × 10−6 [K−2] - -

Idso and Jackson (1969) [13] EIJ 1− a1 exp(−a2
(
Ta − 273.13)2) 0.261 0.00077 [K−2] -

Brutsaert (1975) [14] EBT a1

(
ea
Ta

)1/7
1.24[

(
K

hPa

)
1/7] - -

Satterlund (1979) [15] EST a1

[
1− exp

(
−(a2 ea)

Ta
2016

)]
1.08 1.0 [hPa−1] -

Idso (1981) [16] EID a1 + a2

[
ea exp

(
1500

Ta

)]
0.7 5.95 × 10−5

[hPa−1]
-

Garrat (1992) [17] EGR a1 + a2 exp (−a3 ea) 0.79 0.17 0.96
[hPa−1]

Konzelmann (1994) [48] EKZ a1 + a2

(
ea
Ta

)1/a3 0.23 0.484 [K hPa−1] 8.00

Prata (1996) [61] EPR

1−
(1 + w)exp

[
−(a1 + a2 w)0.5

]
;

w = 46.5
(

ea
Ta

) 1.2 3.0 [g−1cm2] -

Niemelä (2001) [18] ENM a1 + a2(ea − 2) 0.72
0.009; if ea ≥ 2
−0.076; if ea < 2

[hPa−1]
-

Three parameterizations for estimating the sky cover fraction function C(Kt) are
presented in Table 2 and used in this work. Many schemes to estimate sky cover fraction
function are present in the literature. Kasten and Czeplak [53], Crawford and Duchon
et al. [27], Konzelmann et al. [48], and Jegede et al. [55] have suggested equations that
depend on theoretical clear sky estimations, in which the estimation of atmosphere turbidity
and pressure-correction air function are necessary (as described in Marthews et al. [28]).
Here, we decided to only use parameterizations using Kt as a variable.

Table 2. Equations for sky cover fraction function C(Kt).

Reference Code C(Kt)

Black (1956) [51] CQB (0.34 –
(
(0.34)2 + 4× 0.458× (0.803− Kt)

)0.5
)/(−0.916)

Campbell (1985) [52] CCB 2.33− 3.33 Kt

Wheishampel and Urban (1996) [54] CWU 1 +
[
252.7−

(
Rg × 60× 60× 24

)
/(4.19× 10.000)

]
/[

0.695
(

Rg/Kt
)
× 60× 60× 24

)
/(4.19× 10.000)]
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2.4. Proposed Model

A new empirical clear sky emissivity model for atmosphere downward longwave
radiation is proposed:

εCLR (Ta, ea) = a1

(
(Ta − 273.16)

ea

)
+ a2

( ea

100

)
+ a3

(
Ta

273.16

)
(5)

where the values of a1, a2, and a3 are the parameters to be adjusted. The acronym EAI
is used for this proposed equation. This proposal was formulated empirically using
mathematical expressions based on classical equations variables (Table 1). The Equation (5)
describes a multiple regression analysis performed between the experimental [L↓/(σTa

4)]
and two atmospheric variables (Ta, ea) for clear sky days. The first term of Equation (5)
connects the air temperature and the water vapor pressure. Water vapor in the atmosphere
varies widely for small differences in the temperature and pressure conditions. The second
term is related to relative humidity, which is represented by the actual vapor pressure. The
third and final term is relative to air temperature.

2.5. Statistical Indexes and Analysis

L↓ estimations were compared with experimental data using the correlation coefficient
(R2), the root mean square error (RMSE), and percentage bias (PBias). These statistical
indices are defined by

R2 =
∑N

i=1

((
Lexp ↓ i − Lexp ↓

)(
L ↓ i − L ↓

))2

∑N
i=1

(
Lexp ↓ i − Lexp ↓

) 2
∑N

i=1

(
L ↓ i − L ↓

) 2 (6)

RMSE =

(
1
N

N

∑
i=1

(
L ↓ i − Lexp ↓ i

)2
)1/2

(7)

PBias =
∑N

i=1
(

L ↓ i − Lexp ↓ i
)

∑N
i=1
(

Lexp ↓ i
) × 100 (8)

where i is the sampler, L↓ is the simulated atmospheric downward longwave radiation,
Lexp↓ is the experimental atmospheric downward longwave radiation, ( L ↓ ) is the average
of the simulated values, ( Lexp ↓ ) is the average of experimental values, and N is the number
of simulated data. The analysis of the correlation coefficient results follows the classification
suggested by Cohen [62].

Half-hour experimental atmospheric downward longwave radiation measurements
obtained at the SMA site for the entire year of 2014 were used to evaluate the models. The
sequence of analyses was:

Step 1—evaluation of Equation (2) using Equations (3) and (4) with µ = 0 and εCLR (Ta,
ea) from Table 1 and original coefficients;

Step 2—calibration of Equation (2) using Equations (3) and (4) with µ = 0 and εCLR (Ta,
ea) from Table 1 and the new proposed equation (Equation (5));

Step 3—calibration of Equation (2) using Equations (3) and (4) with µ 6= 0, C(Kt) from
Table 2, εCLR (Ta, ea) from Table 1, and the new proposed equation (EAI—Equation (5));

Step 4—validation of Equation (2) using the best results from Step 2 and 3 for both
experimental sites.

Because Kt cannot be calculated during the night, the C(Kt) was determined using the
daily Kt (or daily average). Therefore, in Steps 3 and 4, we used the equations of εCLR for
half-hour measurements combined with one value for C(Kt) for the entire day. The analyses
were performed for different daily sky cover classifications, as described in Section 2.2.

The combination of Equations (3) and (4) yielded 48 possible solutions for Equation (2).
In the coefficient calibration process, each one of them was adjusted by the non-linear least



Atmosphere 2021, 12, 28 7 of 17

squares method. We used the MATLAB (Mathworks Inc.) program and lsqcurvefit function
from Optimization Toolbox™ to solve the least squares method. Only SMA site data from
2014 were considered in the calibration algorithm and individual analysis for each class of
sky cover performed. The performance of the models’ combination was evaluated using
the best RMSE (near zero).

3. Results and Discussion
3.1. Evaluation of L↓Models for SMA Site for 2014

The SMA experimental data for 2014 used to evaluate the L↓ equations presents the
following sky cover classification: 27.40% for clear sky days (CS), 46.57% for partly cloudy
days (CP), and 21.64% for cloudy days (CD). The clearness index did not show seasonality
for SMA (data not shown).

3.1.1. Using Original Coefficients—Step 1

The atmospheric downward longwave radiation estimates were obtained by following
Step 1. The statistical results of the eleven equations used to estimate L↓ are shown in
Table 3. For entire period (EP) and all sky classifications, the EID presented the best results
in all analyzed statistical indexes. The ESW and EIJ equations presented the worst results
for R2 in all periods, while the EKZ showed the worst results for RMSE and PBias. All
equations presented better R2 for CS with values above 0.67. This was expected because the
original equations were developed for clear sky conditions. In general, all results showed
the considered models to underestimate L↓ (negative PBias) with errors above 20 Wm−2.
The errors increased as the clearness index decreased. According to Marthews et al. [28],
the analysis of L↓ over a tropical lowland forest revealed that RMSE values below or equal
to 20 Wm−2 are acceptable for L↓ estimates.

Table 3. Statistical index for the entire period and for different sky coverage classifications for Step 1. The best results are
colored in green and the worst in red.

Entire Period CS CP CD

εCLR (Ta, ea) R2 RMSE
(Wm−2)

PBias
(%) R2 RMSE

(Wm−2)
PBias

(%) R2 RMSE
(Wm−2)

PBias
(%) R2 RMSE

(Wm−2)
PBias

(%)
EAN 0.59 44.79 −9.71 0.73 29.54 −5.23 0.62 45.26 −10.21 0.59 59.78 −14.50
EBR 0.67 50.42 −11.49 0.78 38.590 −8.53 0.68 49.60 −11.17 0.65 64.69 −15.70
EGR 0.54 55.10 −12.67 0.69 36.54 −7.77 0.59 56.64 −13.43 0.54 72.03 −17.61
ENM 0.67 30.92 −3.47 0.78 26.61 −0.32 0.68 30.06 −3.03 0.64 37.55 −8.13
ESW 0.53 51.65 −10.85 0.69 37.17 −6.07 0.59 51.10 −11.06 0.53 68.12 −16.48
EIJ 0.53 49.93 −10.20 0.67 35.47 −5.26 0.59 49.27 −10.41 0.52 66.44 −16.01

EBT 0.66 38.57 −7.75 0.77 28.24 −4.36 0.67 37.72 −7.65 0.65 50.98 −12.16
EST 0.61 35.87 −6.57 0.74 24.77 −2.15 0.64 35.14 −6.90 0.60 48.66 −11.56
EID 0.70 25.48 −2.18 0.79 22.91 0.87 0.69 24.56 −1.97 0.66 30.30 −6.34
EPR 0.65 38.87 −7.89 0.77 27.51 −4.25 0.67 38.19 −7.90 0.64 51.88 −12.42
EKZ 0.62 141.64 −36.75 0.75 122.68 −33.84 0.66 144.85 −36.97 0.61 160.07 −40.03

Generally, both physical and empirical model parameters and performance are signifi-
cantly affected by geographical location and local atmospheric conditions and require site
specific validation and parameterization [56]. Therefore, all L↓ equations of Table 1 need
to be calibrated for the Brazilian Pampa regions to increase the accuracy of the models, as
also highlighted by Li et al. [29].

3.1.2. Calibrating the Coefficients—Step 2

We calibrated the coefficients (a1, a2, a3) of the L↓ according to Step 2. The new pro-
posed equation (L↓ EAI) was also calibrated. The results of the models’ performances
are presented in Table 4 with the respective calibrated parameter values. The calibrated
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coefficient values are small for some parameters and even large for the same parameteriza-
tion in others, as also noted by Carmona et al. [19] and Zhu et al. [63]. By comparing the
statistical indices of the models from Tables 2 and 3, the PBias was reduced drastically by
the calibration (around two order of magnitude) in all sky cover classification, resulting
in the overestimation for most of them. In general, RMSE was reduced for all sky cover
classifications, from 1% for EID to 85% for EKZ. Nevertheless, the analysis of the different
sky cover classifications shows that the RMSE decreased by around 40% when the clearness
index decreased, in addition to R2 slightly decreasing. These results are likely due to the
small variability of the downward longwave radiation in experimental data, as shown in
the x axis of Figure 1 when the clearness index decreased.

In general, the EST presented the smallest errors of the classic calibrated models, with
a slight underestimation of the experimental data (negative Pbias), followed by an EID
model with errors around 3% higher, although with overestimation (positive Pbias). The
worst results were found for ESW, with errors greater than 30 Wm−2 except for CD sky
cover classification (21.18 Wm−2).

Guo et al. [64] evaluated six models (which were also evaluated in this study: EBR,
ESW, EIJ, EBT, EID, EPR) for 71 globally distributed sites and reported that the worst results
were obtained by equations that did not consider ea in their parametrization (ESW and EIJ).
Similar results were found by Carmona et al. [19], who evaluated the same models for a
site in the sub-humid Pampean region in Argentina. Here, after calibration, ESW also had
the worst results, followed by EKZ and EGR, which, however, are functions of ea (EKZ is
also a function of Ta).

The dispersion between the experimental and estimated EAI L↓ are shown in Figure 2.
The EAI overestimated the lowest experimental L↓ values, especially during night peri-
ods (Figure 3). Principally in CD conditions, the high experimental L↓ values are better
represented by EAI. In general, the EAI presented a better performance for all sky cover
classifications compared to the classical equations (Table 4). Moreover, this equation
showed the smallest variability in the statistical index for different sky cover classifications,
indicating that this formulation accurately represents all sky conditions even using the EP
calibration. The best performance of the EAI can be due to the equation was obtained over
periods of entire days classified as clear sky. On these days, the sky may have presented
some moments of lower clearness indices (some clouds in the sky), but that can be masked
by the daily average sky cover classification.
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Table 4. Calibrated coefficients and statistical index for the entire period and different sky coverage classifications for Step 2. The best results are colored in green and the worst in red. RMSE in
(Wm−2) and PBias in (%).

εCLR
(Ta, ea)

Entire Period CS CP CD
a1/a2/a3 R2 RMSE PBias a1/a2/a3 R2 RMSE PBias a1/a2/a3 R2 RMSE PBias a1/a2/a3 R2 RMSE PBias

EAN 0.94/0.21/0.04 0.61 26.03 0.15 5.34/4.52/2.22
× 10−4 0.73 23.21 0.23 0.94/0.06/0.02 0.61 22.90 0.06 0.97/1.14/0.13 0.61 16.05 0.03

EBR 0.77/0.03/- 0.61 26.13 0.15 0.78/0.02/- 0.73 23.26 0.21 0.87/0.01/- 0.61 22.90 0.06 0.87/0.02/- 0.59 16.49 0.03
ESW 1.05 × 10−5/–/- 0.53 34.25 0.13 9.99 × 10−6/-/- 0.69 32.69 0.31 1.05 × 10−5/-/- 0.59 31.34 0.08 1.12 × 10−5/-/- 0.53 21.18 0.03

EIJ 0.08/−3.76 ×
10−4/- 0.54 26.81 −0.07 0.14/−1.22 ×

10−4/- 0.68 24.05 0.02 0.07/−5.0 ×
10−4/- 0.59 22.37 −0.07 0.02/−1.3 ×

10−3/- 0.55 16.40 −0.03

EBT 1.35/-/- 0.66 26.60 0.19 1.30/-/- 0.77 24.92 0.33 1.34/-/- 0.67 25.29 0.11 1.41/-/- 0.65 17.92 0.05

EST 2.94/5.57 ×
10−5/- 0.67 23.55 −0.06 2.96/3.75 ×

10−5/- 0.77 20.91 −0.22 0.91/1.47 ×
107/- 0.59 23.02 0.02 4.49/2.72 ×

10−6/- 0.66 14.72 −0.05

EID 0.77/4.54 ×
10−5/- 0.67 24.24 0.16 0.76/3.40 ×

10−5/- 0.76 21.88 0.24 0.83/2.46 ×
10−5/- 0.65 22.13 0.08 0.87/2.59 ×

10−5/- 0.62 15.96 0.04

EGR 0.90/7.43/7.91 0.54 27.25 0.01 0.86/−4.91/10.57 0.69 24.06 0.09 0.91/8.16/7.06 0.59 23.02 0.02 0.96/8.30/6.87 0.54 16.84 −0.09
EKZ 0.90/−5.15/0.12 0.54 27.25 0.01 0.86/−5.76/0.07 0.69 24.06 0.09 0.86/0.24/1.82 0.62 22.83 0.06 0.96/−4.86/0.06 0.54 16.84 −0.01
EPR 2.07/4.08/- 0.63 25.82 0.18 3.65/2.59/- 0.73 23.02 0.20 5.97/2.83/- 0.62 22.83 0.07 −0.58/7.23/- 0.62 16.24 0.13

ENM 0.84/3.60 ×
10−3/- 0.61 26.20 0.14 0.82/2.5 ×

10−3/- 0.73 23.18 0.22 0.89/1.2 x10−3/- 0.61 22.90 0.06 0.92/2.1 ×
10−3/- 0.58 16.55 0.02

EAI −0.20/−0.07/1.05 0.72 21.16 −0.03 −0.15/−0.07/0.98 0.82 18.18 −0.02 −0.22/−0.29/1.12 0.71 18.72 −0.05 −0.22/−0.40/1.18 0.67 14.06 −0.02
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Figure 2. Half hour correlation between experimental and estimated L↓ using the calibrated proposed equation (EAI), for
SMA in 2014 (a) EP—entire period; (b) CS—clear sky; (c) CP—partly cloudy sky; (d) CD—cloudy sky. The statistics indices
are shown in Table 4.

3.1.3. Calibrating the Coefficients—Step 3

We calibrated the coefficients (a1, a2, a3, λ, µ) of the L↓ obtained from Equations (2)
and (3) with the εCLR (Ta, ea) from (Table 1) and C(Kt) from (Table 2). The results of the
five best combinations for each sky cover classification are presented in Table 5 with the
respective calibrated parameter values. By adding a cloud sky correction, all combinations
presented better results than without this correction for all sky cover classifications, where,
in general, RMSE decreased by around 5 Wm−2 and R2 increased by almost 10%. The EST
and EID models are present in all five of the best results, especially CQB and CCB sky cover
fraction functions. The smallest errors were obtained in CD classification, where EST_CWU
presented the best result, although the R2 was lower in this sky classification. For the
other sky cover classifications, in general, the best results were obtained by EST_CCB and
EST_CQB.

Table 5. Calibrated coefficients and the statistical index for the entire period and different sky
coverage classifications for the five best results in Step 3.

εCLR(Ta, ea)_C(Kt) a1 a2 a3 µ λ R2 RMSE
(Wm−2)

Pbias
(%)

Entire Period

EST_CQB 5.45 2.76 × 10−7 - 0.13 0.95 0.78 17.82 −0.06
EBT_CQB 1.27 - - 0.14 1.44 0.76 22.40 −0.39
EID_CQB 0.76 2.71 × 10−5 - 0.15 1.10 0.75 19.73 −0.16
EST_CCB 4.96 2.29 × 10−7 - 0.07 0.56 0.73 17.52 −0.14
EKZ_CQB 0.68 0.32 3.85 0.17 1.01 0.73 20.48 −0.17
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Table 5. Cont.

εCLR(Ta, ea)_C(Kt) a1 a2 a3 µ λ R2 RMSE
(Wm−2)

Pbias
(%)

CS

EST_CCB 4.81 8.46 × 10−7 - 0.27 1.19 0.80 18.06 −0.07
EST_CQB 3.80 4.44 × 10−6 - 0.14 1.12 0.79 19.28 −0.09
EBT_CCB 1.29 - - 443.41 84.01 0.79 23.42 −0.52
EID_CCB 0.76 3.42 × 10−5 - 28.53 3.51 0.79 19.46 −0.20
EBT_CQB 1.18 - - 0.11 0.09 0.79 23.20 −0.47

CP

EST_CQB 3.19 1.42 × 10−7 - 1.10 0.13 0.72 18.52 −0.07
EST_CCB 3.55 8.23 × 10−6 - 0.08 0.72 0.71 19.49 −0.17
EBT_CQB 1.29 - - 0.21 2.49 0.71 23.76 −0.42
EBT_CCB 1.30 - - 0.06 1.42 0.71 23.76 −0.42
EID_CCB 0.80 2.36 × 10−5 - 0.06 1.15 0.69 20.71 −0.17

CD

EST_CWU 0.94 8.18 × 10−8 - 0.52 0.49 0.68 14.00 −0.17
EST_CQB 1.92 8.71 × 10−6 - 1.06 0.20 0.68 14.58 −0.08
EBT_CQB 2.58 - - −0.44 −0.15 0.67 17.31 −0.19
EBT_CCB 1.39 - - 0.00 4.36 0.67 17.27 −0.18
EST_CCB 1.97 1.69 × 10−4 - 0.32 0.28 0.67 15.25 −0.12

The results of all combinations using the new proposed equation (EAI) are presented
in Table 6. The EAI equation with sky cover fraction function combinations had better
performance than the results demonstrated before, with an RMSE below 20 Wm−2 in all
sky cover classifications. The RMSE decreased by no more than 20% from the calibrated
one without C(Kt) (comparing Table 4 with Table 6). For CD, there was no significant
difference (<3%) in the results with C(Kt). As the EAI was formulated considering the daily
mean of Kt, when implementing the parameterization of cloud cover C(Kt), no significant
influence was observed.

Table 6. Calibrated coefficients and statistical index for the entire period and different sky coverage
classifications for EAI in Step 3.

εCLR(Ta, ea)_C(Kt) a1 a2 a3 µ λ R2 RMSE
(Wm−2)

PBias
(%)

Entire Period

EAI_CQB −0.17 −0.25 1.01 0.13 1.12 0.79 17.23 −0.01
EAI_CCB −0.19 −0.31 1.06 0.06 0.71 0.75 16.63 0.00
EAI_CWU −0.02 −0.01 0.09 0.04 1.01 0.72 20.80 −0.02

CS

EAI_CCB −0.16 −0.22 1.02 1.75 2.35 0.83 16.46 0.00
EAI_CWU −0.01 −0.01 0.07 0.09 0.90 0.82 18.01 −0.01
EAI_CQB −0.14 −0.12 0.97 1.47 3.39 0.82 17.89 −0.04

CP

EAI_CCB −0.20 −0.30 1.04 0.09 0.47 0.74 17.68 0.00
EAI_CQB −0.19 −0.28 0.97 0.21 0.55 0.74 17.69 0.00
EAI_CWU −0.02 −0.03 0.10 0.03 1.05 0.71 18.57 −0.01

CD

EAI_CCB −0.21 −0.38 1.14 0.01 2.44 0.69 13.82 0.00
EAI_CQB −0.21 −0.38 1.14 0.04 4.54 0.69 13.82 0.00
EAI_CWU −0.19 −0.36 1.02 0.27 −0.11 0.68 14.10 0.00
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3.1.4. Validation of a New Proposed Downward Longwave Radiation—Step 4

In general, EAI presented better results than the classical equations for all sky covers
(CS, CP, CD) and did not significantly improve the results using the cloud sky correction,
indicating that the EAI is recommended to use in this region, even without considering
the cloud sky correction. Here, we will evaluate the EAI calibrated over the entire period
(Table 6).

To evaluate whether the L↓ (EAI) equation obtained by calibration for SMA adequately
describes the downward longwave radiation at different locations in the Pampa biome,
we used data from the SMA (the entire years of 2015–2019) and CAS (from 20 February
2013 to 16 April 2016) experimental sites. To compare EAI with a classical model, we will
also present EST results, which is a model that showed the best results in all evaluations
(Table 5).

The EAI equation applied to CAS presented similar results to SMA for R2 and PBias
(~1%) and a difference of around 10% regarding the RMSE (Table 7), showing that the
proposed equation efficiently estimates L↓ in the Pampa biome. It is also noted that when
we implemented the parameters for cloud sky correction in EAI, the results improved by
20%; the same behavior was found for CAS. When comparing EAI with EST and its original
coefficients without the cloud sky correction, the EAI presented the best results. After
incorporating the parameterizations in EST, the statistical indices significantly improved
except for using CCB. Nevertheless, using the CQB and CWU parameterizations presented
the same statistical indices in both sites for both EAI and EST.

Table 7. Mean L↓ estimated by the EAI and EST equations using coefficients for the entire period.
Experimental L↓ was 375.69 Wm−2 for Santa Maria experimental site (SMA) and 374.89 Wm−2 for
Cachoeira do Sul experimental site (CAS); ESTorig uses the original coefficients from Table 1 and
ESTcal uses the calibrate coefficients from Table 4. Equations were combined with the cloud sky
correction function using parameters from Table 5.

εCLR(Ta, ea)_C(Kt)
L↓

(Wm−2)
RMSE

(Wm−2) R2 PBias
(%)

SMA (1 January 2015 to 31 December 2019)

EAI 381.49 22.84 0.69 1.54
EAI_CQB 383.45 18.59 0.79 1.44
EAI_CCB 389.96 18.37 0.76 1.46
EAI_CWU 381.34 22.75 0.70 1.50

ESTorig 354.55 33.71 0.60 −5.62
ESTcal 407.53 40.65 0.66 8.47

EST_CQB 383.11 18.52 0.78 1.35
EST_CCB 340.09 47.58 0.75 −11.51
EST_CWU 381.53 22.57 0.70 1.55

CAS (20 February 2013 to 16 April 2016)

EAI 379.88 25.33 0.67 1.33
EAI_CQB 388.00 20.47 0.76 1.07
EAI_CCB 392.65 20.75 0.72 1.01
EAI_CWU 388.06 25.04 0.70 1.91

ESTorig 361.33 32.60 0.61 −5.10
ESTcal 415.34 42.50 0.66 9.08

EST_CQB 387.80 20.19 0.76 1.02
EST_CCB 342.82 50.44 0.71 −11.80
EST_CWU 387.60 25.03 0.69 1.79

The SMA and CAS experimental sites are approximately 60 km far from each other,
although they have a significantly different land cover. The SMA surface is covered
with natural grassland used by cattle, while CAS is in a lowland rice paddy. However,
comparing the diurnal cycle of atmospheric variables for the same data period for the
SMA and CAS sites, we can see very similar behavior from 1 January 2014 to 16 April 2016
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(Figure 3). The most notable difference is in diurnal RH when SMA presents smaller values
than CAS. The experimental L↓ in CAS and SMA are quite similar during the day, but in
the night period, SMA is around 10 Wm−2 greater than CAS (primarily in the night and
early morning, from 0 to 8 h).

Figure 3. Diurnal cycle of atmospheric variables and experimental and estimated EAI L↓ for SMA
and CAS from 01 January 2014 to 16 April 2016: (a) global solar radiation (Rg); (b) relative humidity
(RH); (c) and air temperature (Ta); (d) downward longwave radiation (L↓) and (e) scatter plot of
half-hour experimental and estimated L↓. The 1:1 line (dotted black line) are presented. The statistics
indices of panel (e) are shown in Table 7 (SMA: R2 = 0.69; RMSE = 22.84 Wm−2; CAS: R2 = 0.67;
RMSE = 25.33 Wm−2).

The new model presented proved to be valid, given the results reported herein, in
which EAI fit well without requiring specific calibration for CAS. Therefore, the EAI equa-
tion can be an excellent alternative to represent L↓ regarding similar weather conditions.
Thus, the proposed equation (EAI) presented a good performance to estimate L↓ in the
Brazilian Pampa biome with values similar to those obtained by Carmona et al. [19], who
developed a model for a region with similar vegetation to that analyzed here (Argentinian
Pampa) but included a sky cover fraction (cloud fraction) in their formulation for L↓. In
Carmona et al. [19], two equations are proposed, one only for clear sky and another for all
sky conditions. However, they used the RH as atmospheric variables in emissivity equa-
tions, and to calculate the sky cover fraction, it is necessary to estimate the theoretical solar
radiation received in clear-sky conditions, depending on the sky conditions such as the
turbidity coefficient and atmospheric pressure. Nonetheless, here we chose to analyze only
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equations using ea and/or Ta, and we suggest employing equations for a sky cover fraction
that only needs the clearness index calculated using the extraterrestrial solar radiation,
making the proposed approach much easier to estimate L↓.

4. Conclusions

An L↓ estimation analysis using different equations for emissivity and cloud sky
correction concerning experimental data measured in the SMA site was presented. First,
eleven well known L↓models were analyzed for SMA to test their accuracy under different
sky cover classifications (CS, CP, and CD). The results showed that all models presented
high error and underestimated values compared to the experimental data. Thus, it was
necessary to calibrate the equation’s coefficients to adjust the L↓models, leading to better
statistical indexes.

A general structure to the cloud sky correction was added to the clear sky emissivity
models to improve L↓ estimates and determine how they influence cloud presence in the
different periods analyzed. Moreover, we did a joint calibration between the clear sky emis-
sivity model and cloud sky correction. The results showed a considerable improvement in
the RMSE compared to the models without cloud sky correction function, especially under
CD conditions. However, one limitation of this study was calculated for C(Kt) in the daily
mean.

A new equation (EAI) was developed to reproduce L↓ data more accurately. The EAI
was calibrated for SMA and showed better performance than the other models tested, with
an RMSE ranging from 13 to 21 Wm−2, PBias close to zero, and higher values than the
correlation coefficient.

The EAI equation was evaluated for a long-term dataset for SMA and CAS with
good results. The model proposed has a simple parameterization using the fundamental
meteorological variables water vapor pressure and air temperature, and its formulation
does not require cloud sky correction to satisfactorily represent the L↓. Therefore, we
recommend using the proposed equation to calculate L↓ over the Pampa biome under
these specific climatic conditions and without sky cover distinction.

As a complementary part of this work, the results can be used in the verification
and calibration of the Brazilian Global Atmospheric Model—BAM [65], the atmospheric
component of the Brazilian Earth System Model (BESM), since most of the BAM evaluation
studies have been carried out for the most tropical portion of Brazil [66], with no work
using the Pampa region from southern Brazil.

Author Contributions: Conceptualization, D.R.R. and D.A.; methodology, L.B. and S.M.; software,
R.H., L.R., T.Z.; validation, G.C.R., M.B.D., G.P.V., T.B. and T.Z.; writing—original draft preparation,
D.A., G.C.R.; writing—review and editing, D.R.R., T.Z., V.d.A.S., L.B. and D.L.H.; supervision, D.R.R.;
All authors have read and agreed to the published version of the manuscript

Funding: Coordination for the Improvement of Higher Education Personnel (CAPES—Brazil through
the project CAPES/Modelagem 88881.148662/2017-01.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors acknowledge the staff of the Micrometeorology Lab of the Federal
University of Santa Maria for the technical support provided by the instruments’ measurements and
dataset, and the Coordination for the Improvement of Higher Education Personnel (CAPES—Brazil),
National Council for Scientific and Technological Development (CNPq—Brazil), Foundation for
Research of Rio Grande do Sul State (FAPERGS) and Financier of Studies and Projects (FINEP—
Brazil) for their financial support.

Conflicts of Interest: The authors declare no conflict of interest.



Atmosphere 2021, 12, 28 15 of 17

References
1. Kiehl, J.T.; Trenberth, K.E. Earth’s Annual Global Mean Energy Budget. Bull. Am. Meteorol. Soc. 1997, 78, 197–208. [CrossRef]
2. Liou, K.-N. An Introduction to Atmospheric Radiation, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2002.
3. Garratt, J.R. Clear-Sky Longwave Irradiance at the Earth’s Surface—Evaluation of Climate Models. J. Clim. 2001, 14, 1647–1670.

[CrossRef]
4. Feng, C.; Zhang, X.; Wei, Y.; Zhang, W.; Hou, N.; Xu, J.; Jia, K.; Yao, Y.; Xie, X.; Jiang, B.; et al. Estimating Surface Downward

Longwave Radiation Using Machine Learning Methods. Atmosphere 2020, 11, 1147. [CrossRef]
5. Yang, F.; Cheng, J. A framework for estimating cloudy sky surface downward longwave radiation from the derived active and

passive cloud property parameters. Remote Sens. Environ. 2020, 248, 111972. [CrossRef]
6. Chen, J.; He, T.; Jiang, B.; Liang, S. Estimation of all-sky all-wave daily net radiation at high latitudes from MODIS data. Remote

Sens. Environ. 2020, 245, 111842. [CrossRef]
7. Cheng, J.; Liang, S. Global Estimates for High-Spatial-Resolution Clear-Sky Land Surface Upwelling Longwave Radiation From

MODIS Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4115–4129. [CrossRef]
8. Wang, K.; Dickinson, R.E. Global atmospheric downward longwave radiation at the surface from ground-based observations,

satellite retrievals, and reanalyses. Rev. Geophys. 2013, 51, 150–185. [CrossRef]
9. Wang, T.; Yan, G.; Chen, L. Consistent retrieval methods to estimate land surface shortwave and longwave radiative flux

components under clear-sky conditions. Remote Sens. Environ. 2012, 124, 61–71. [CrossRef]
10. Emde, C.; Buras-Schnell, R.; Kylling, A.; Mayer, B.; Gasteiger, J.; Hamann, U.; Kylling, J.; Richter, B.; Pause, C.; Dowling, T.; et al.

The libRadtran software package for radiative transfer calculations (version 2.0.1). Geosci. Model Dev. 2016, 9, 1647–1672.
[CrossRef]

11. Berk, A.; Conforti, P.; Kennett, R.; Perkins, T.; Hawes, F.; van den Bosch, J. MODTRAN6: A Major Upgrade of the MODTRAN
Radiative Transfer Code. In Proceedings of the 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in
Remote Sensing (WHISPERS), Lausanne, Switzerland, 24–27 June 2014; p. 90880H.

12. Swinbank, W.C. Long-wave radiation from clear skies. Q. J. R. Meteorol. Soc. 1963, 89, 339–348. [CrossRef]
13. Idso, S.B.; Jackson, R. D Thermal Radiation From the Atmosphere. J Geophys Res 1969, 74, 5397–5403. [CrossRef]
14. Brutsaert, W. On a derivable formula for long-wave radiation from clear skies. Water Resour. Res. 1975, 11, 742–744. [CrossRef]
15. Satterlund, D.R. An improved equation for estimating long-wave radiation from the atmosphere. Water Resour. Res. 1979, 15,

1649–1650. [CrossRef]
16. Idso, S.B. A set of equations for full spectrum and 8- to 14-µm and 10.5- to 12.5-µm thermal radiation from cloudless skies. Water

Resour. Res. 1981, 17, 295–304. [CrossRef]
17. Garrat, J. The Atmospheric Boundary Layer (Cambridge Atmospheric and Space Science Series); Cambridge University Press: Cambridge,

UK, 1992.
18. Niemelä, S.; Räisänen, P.; Savijärvi, H. Comparison of surface radiative flux parameterizations part I: Longwave radiation. Atmos.

Res. 2001, 58, 1–18. [CrossRef]
19. Carmona, F.; Rivas, R.; Caselles, V. Estimation of daytime downward longwave radiation under clear and cloudy skies conditions

over a sub-humid region. Theor. Appl. Climatol. 2014, 115, 281–295. [CrossRef]
20. Chang, K.; Zhang, Q. Modeling of downward longwave radiation and radiative cooling potential in China. J. Renew. Sustain.

Energy 2019, 11, 066501. [CrossRef]
21. Liu, M.; Zheng, X.; Zhang, J.; Xia, X. A revisiting of the parametrization of downward longwave radiation in summer over the

Tibetan Plateau based on high-temporal-resolution measurements. Atmos. Chem. Phys. 2020, 20, 4415–4426. [CrossRef]
22. Duarte, H.F.; Dias, N.L.; Maggiotto, S.R. Assessing daytime downward longwave radiation estimates for clear and cloudy skies

in Southern Brazil. Agric. For. Meteorol. 2006, 139, 171–181. [CrossRef]
23. Held, I.M.; Soden, B.J. WATER VAPOR FEEDBACK AND GLOBAL WARMING. Annu. Rev. Energy Environ. 2000, 25, 441–475.

[CrossRef]
24. Vall, S.; Castell, A. Radiative cooling as low-grade energy source: A literature review. Renew. Sustain. Energy Rev. 2017, 77,

803–820. [CrossRef]
25. Stephens, G.L.; Wild, M.; Stackhouse, P.W.; L’Ecuyer, T.; Kato, S.; Henderson, D.S. The Global Character of the Flux of Downward

Longwave Radiation. J. Clim. 2012, 25, 2329–2340. [CrossRef]
26. Flerchinger, G.N.; Xaio, W.; Marks, D.; Sauer, T.J.; Yu, Q. Comparison of algorithms for incoming atmospheric long-wave radiation.

Water Resour. Res. 2009, 45, 1–13. [CrossRef]
27. Crawford, T.M.; Duchon, C.E. An improved parameterization for estimating effective atmospheric emissivity for use in calculating

daytime downwelling longwave radiation. J. Appl. Meteorol. 1999, 38, 474–480. [CrossRef]
28. Marthews, T.R.; Malhi, Y.; Iwata, H. Calculating downward longwave radiation under clear and cloudy conditions over a tropical

lowland forest site: An evaluation of model schemes for hourly data. Theor. Appl. Climatol. 2012, 107, 461–477. [CrossRef]
29. Li, M.; Jiang, Y.; Coimbra, C.F.M. On the determination of atmospheric longwave irradiance under all-sky conditions. Sol. Energy

2017, 144, 40–48. [CrossRef]
30. Monteith, J.L. An empirical method for estimating long-wave radiation exchanges in the British Isles. Q. J. R. Meteorol. Soc. 1961,

87, 171–179. [CrossRef]

http://dx.doi.org/10.1175/1520-0477(1997)078&lt;0197:EAGMEB&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(2001)014&lt;1647:CSLIAT&gt;2.0.CO;2
http://dx.doi.org/10.3390/atmos11111147
http://dx.doi.org/10.1016/j.rse.2020.111972
http://dx.doi.org/10.1016/j.rse.2020.111842
http://dx.doi.org/10.1109/TGRS.2016.2537650
http://dx.doi.org/10.1002/rog.20009
http://dx.doi.org/10.1016/j.rse.2012.04.026
http://dx.doi.org/10.5194/gmd-9-1647-2016
http://dx.doi.org/10.1002/qj.49708938105
http://dx.doi.org/10.1029/JC074i023p05397
http://dx.doi.org/10.1029/WR011i005p00742
http://dx.doi.org/10.1029/WR015i006p01649
http://dx.doi.org/10.1029/WR017i002p00295
http://dx.doi.org/10.1016/S0169-8095(01)00084-9
http://dx.doi.org/10.1007/s00704-013-0891-3
http://dx.doi.org/10.1063/1.5117319
http://dx.doi.org/10.5194/acp-20-4415-2020
http://dx.doi.org/10.1016/j.agrformet.2006.06.008
http://dx.doi.org/10.1146/annurev.energy.25.1.441
http://dx.doi.org/10.1016/j.rser.2017.04.010
http://dx.doi.org/10.1175/JCLI-D-11-00262.1
http://dx.doi.org/10.1029/2008WR007394
http://dx.doi.org/10.1175/1520-0450(1999)038&lt;0474:AIPFEE&gt;2.0.CO;2
http://dx.doi.org/10.1007/s00704-011-0486-9
http://dx.doi.org/10.1016/j.solener.2017.01.006
http://dx.doi.org/10.1002/qj.49708737206


Atmosphere 2021, 12, 28 16 of 17

31. Berger, X.; Buriot, D.; Garnier, F. About the equivalent radiative temperature for clear skies. Sol. Energy 1984, 32, 725–733.
[CrossRef]

32. Martin, M.; Berdahl, P. Characteristics of infrared sky radiation in the United States. Sol. Energy 1984, 33, 321–336. [CrossRef]
33. Heitor, A.; Biga, A.J.; Rosa, R. Thermal radiation components of the energy balance at the ground. Agric. For. Meteorol. 1991, 54,

29–48. [CrossRef]
34. Iziomon, M.G.; Mayer, H.; Matzarakis, A. Downward atmospheric longwave irradiance under clear and cloudy skies: Measure-

ment and parameterization. J. Atmos. Solar-Terrestrial Phys. 2003, 65, 1107–1116. [CrossRef]
35. Maykut, G.A.; Church, P.E. Radiation Climate of Barrow, Alaska, 1962–66. J. Appl. Meteorol. 1973, 12, 620–628. [CrossRef]
36. Jacobs, J.D. Radiation climate of Broughton Island. In Energy Budget Studies in Relation to Fast-ice Breakup Processes in Davis Strait;

Barry, R.G., Jacobs, J.D., Eds.; University of Colorado: Denver, CO, USA, 1978; pp. 105–120.
37. Sugita, M.; Brutsaert, W. Cloud effect in the estimation of instantaneous downward longwave radiation. Water Resour. Res. 1993,

29, 599–605. [CrossRef]
38. Boldrini, I.; Overbeck, G.; Trevisan, R. Biodiversidade de plantas. In Os Campos do Sul; UFRGS: Porto Alegre, Brazil, 2015;

pp. 53–70. ISBN 978-85-66106-50-3.
39. Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst.

Sci. 2007, 11, 1633–1644. [CrossRef]
40. INMET. Instituto Nacional de Meteorologia. Available online: http://www.inmet.gov.br/portal/index.php?r=clima/

normaisClimatologicas (accessed on 23 October 2020). (In Portuguese)
41. Grimm, A.M. How do La Niña events disturb the summer monsoon system in Brazil? Clim. Dyn. 2004, 22, 123–138. [CrossRef]
42. Zimmer, T.; Buligon, L.; de Arruda Souza, V.; Romio, L.C.; Roberti, D.R. Influence of clearness index and soil moisture in the soil

thermal dynamic in natural pasture in the Brazilian Pampa biome. Geoderma 2020, 378, 114582. [CrossRef]
43. Rubert, G.C.; Roberti, D.R.; Pereira, L.S.; Quadros, F.L.F.; Campos Velho, H.F.D.; Leal de Moraes, O.L. Evapotranspiration of the

Brazilian Pampa biome: Seasonality and influential factors. Water 2018, 10, 1864. [CrossRef]
44. Diaz, M.B.; Roberti, D.R.; Carneiro, J.V.; de Arruda Souza, V.; de Moraes, O.L.L. Dynamics of the superficial fluxes over a flooded

rice paddy in southern Brazil. Agric. For. Meteorol. 2019, 276–277, 107650. [CrossRef]
45. Souza, V.A.; Roberti, D.R.; Ruhoff, A.L.; Zimmer, T.; Adamatti, D.S.; de Gonçalves, L.G.G.; Diaz, M.B.; Alves, R.d.C.M.; de Moraes,

O.L.L. Evaluation of MOD16 algorithm over irrigated rice paddy using flux tower measurements in Southern Brazil. Water
(Switzerland) 2019, 11. [CrossRef]

46. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M.; Ab, W. Allen_FAO1998; Food and Agriculture Organization: Rome, Italy, 1998;
p. 300. [CrossRef]

47. Kuye, A.; Jagtap, S.S. Analysis of solar radiation data for Port Harcourt, Nigeria. Sol. Energy 1992, 49, 139–145. [CrossRef]
48. Konzelmann, T.; van de Wal, R.S.W.; Greuell, W.; Bintanja, R.; Henneken, E.A.C.; Abe-Ouchi, A. Parameterization of global and

longwave incoming radiation for the Greenland Ice Sheet. Glob. Planet. Change 1994, 9, 143–164. [CrossRef]
49. Monteith, J.L.; Unsworth, M.H. Principles of Environmental Physics; 1990; ISBN 9780123869104.
50. Lhomme, J.P.; Vacher, J.J.; Rocheteau, A. Estimating downward long-wave radiation on the Andean Altiplano. Agric. For. Meteorol.

2007, 145, 139–148. [CrossRef]
51. Black, J.N. The distribution of solar radiation over the Earth’s surface. Arch. für Meteorol. Geophys. und Bioklimatologie Ser. B 1956,

7, 165–189. [CrossRef]
52. Campbell, G.S. Soil Physics with BASIC: Transport Models for Soil–Plant Systems; Elsevier: Amsterdam, The Netherlands, 1985;

ISBN 9780080869827.
53. Kasten, F.; Czeplak, G. Solar and terrestrial radiation dependent on the amount and type of cloud. Sol. Energy 1980, 24, 177–189.

[CrossRef]
54. Weishampel, J.F.; Urban, D.L. Coupling a spatially-explicit forest gap model with a 3-D solar routine to simulate latitudinal effects.

Ecol. Modell. 1996, 86, 101–111. [CrossRef]
55. Jegede, O.O.; Ogolo, E.O.; Aregbesola, T.O. Estimating net radiation using routine meteorological data at a tropical location in

Nigeria. Int. J. Sustain. Energy 2006, 25, 107–115. [CrossRef]
56. Choi, M. Parameterizing daytime downward longwave radiation in two Korean regional flux monitoring network sites. J. Hydrol.

2013, 476, 257–264. [CrossRef]
57. Dilley, A.C.; O’Brien, D.M. Estimating downward clear sky long-wave irradiance at the surface from screen temperature and

precipitable water. Q. J. R. Meteorol. Soc. 1998, 124, 1391–1401. [CrossRef]
58. Choi, M.; Jacobs, J.M.; Kustas, W.P. Assessment of clear and cloudy sky parameterizations for daily downwelling longwave

radiation over different land surfaces in Florida, USA. Geophys. Res. Lett. 2008, 35, L20402. [CrossRef]
59. Ångström, A.K. A Study of the Radiation of the Atmosphere: Based upon Observations of the Nocturnal Radiation during Expeditions to

Algeria and to California; Smithsonian Institution: Washington, DC, USA, 1915; Volume 65.
60. Brunt, D. Notes on radiation in the atmosphere. Q. J. R. Meteorol. Soc. 1932, 58, 389–420. [CrossRef]
61. 61 Prata, A.J. A new long-wave formula for estimating downward clear-sky radiation at the surface. Q. J. R. Meteorol. Soc. 1996,

122, 1127–1151. [CrossRef]
62. Cohen, M.M. Mechanism of Injury to Gastric Mucosa by Non-Steroidal Anti-Inflammatory Drugs and the Protective Role of

Prostaglandins. Prostaglandins Leukot. Gastrointest. Dis. 1988, 148–151. [CrossRef]

http://dx.doi.org/10.1016/0038-092X(84)90247-0
http://dx.doi.org/10.1016/0038-092X(84)90162-2
http://dx.doi.org/10.1016/0168-1923(91)90039-S
http://dx.doi.org/10.1016/j.jastp.2003.07.007
http://dx.doi.org/10.1175/1520-0450(1973)012&lt;0620:RCOBA&gt;2.0.CO;2
http://dx.doi.org/10.1029/92WR02352
http://dx.doi.org/10.5194/hess-11-1633-2007
http://www.inmet.gov.br/portal/index.php?r=clima/normaisClimatologicas
http://www.inmet.gov.br/portal/index.php?r=clima/normaisClimatologicas
http://dx.doi.org/10.1007/s00382-003-0368-7
http://dx.doi.org/10.1016/j.geoderma.2020.114582
http://dx.doi.org/10.3390/w10121864
http://dx.doi.org/10.1016/j.agrformet.2019.107650
http://dx.doi.org/10.3390/w11091911
http://dx.doi.org/10.1016/j.eja.2010.12.001
http://dx.doi.org/10.1016/0038-092X(92)90148-4
http://dx.doi.org/10.1016/0921-8181(94)90013-2
http://dx.doi.org/10.1016/j.agrformet.2007.04.007
http://dx.doi.org/10.1007/BF02243320
http://dx.doi.org/10.1016/0038-092X(80)90391-6
http://dx.doi.org/10.1016/0304-3800(94)00201-0
http://dx.doi.org/10.1080/14786450600593261
http://dx.doi.org/10.1016/j.jhydrol.2012.10.041
http://dx.doi.org/10.1002/qj.49712454903
http://dx.doi.org/10.1029/2008GL035731
http://dx.doi.org/10.1002/qj.49705824704
http://dx.doi.org/10.1002/qj.49712253306
http://dx.doi.org/10.1007/978-3-642-73316-1_31


Atmosphere 2021, 12, 28 17 of 17

63. Zhu, M.; Yao, T.; Yang, W.; Xu, B.; Wang, X. Evaluation of Parameterizations of Incoming Longwave Radiation in the High-
Mountain Region of the Tibetan Plateau. J. Appl. Meteorol. Climatol. 2017, 56, 833–848. [CrossRef]

64. Guo, Y.; Cheng, J.; Liang, S. Comprehensive assessment of parameterization methods for estimating clear-sky surface downward
longwave radiation. Theor. Appl. Climatol. 2019, 135, 1045–1058. [CrossRef]

65. Figueroa, S.N.; Bonatti, J.P.; Kubota, P.Y.; Grell, G.A.; Morrison, H.; Barros, S.R.M.; Fernandez, J.P.R.; Ramirez, E.; Siqueira, L.;
Luzia, G.; et al. The Brazilian Global Atmospheric Model (BAM): Performance for Tropical Rainfall Forecasting and Sensitivity to
Convective Scheme and Horizontal Resolution. Weather Forecast. 2016, 31, 1547–1572. [CrossRef]

66. Costa, M.H.; Pires, G.F. Effects of Amazon and Central Brazil deforestation scenarios on the duration of the dry season in the arc
of deforestation. Int. J. Climatol. 2010, 30, 1970–1979. [CrossRef]

http://dx.doi.org/10.1175/JAMC-D-16-0189.1
http://dx.doi.org/10.1007/s00704-018-2423-7
http://dx.doi.org/10.1175/WAF-D-16-0062.1
http://dx.doi.org/10.1002/joc.2048

	Introduction 
	Materials and Methods 
	Site and Instrumentation 
	Clearness Index 
	Evaluated Parameterizations 
	Proposed Model 
	Statistical Indexes and Analysis 

	Results and Discussion 
	Evaluation of L Models for SMA Site for 2014 
	Using Original Coefficients—Step 1 
	Calibrating the Coefficients—Step 2 
	Calibrating the Coefficients—Step 3 
	Validation of a New Proposed Downward Longwave Radiation—Step 4 


	Conclusions 
	References

