
sid.inpe.br/mtc-m21c/2021/01.19.10.57-TDI

SPECIFICATION OF A NEW DATA LINK LAYER
PROTOCOL AND ASSOCIATED “CHANNEL” API FOR
EMBEDDED NETWORKS ONBOARD OF AEROSPACE

VEHICLES

Sérgio Duarte Penna

Doctorate Thesis of the Graduate
Course in Space Engineering and
Technology/Space Systems of
Management and Engineering,
guided by Dr. Marcelo Lopes de
Oliveira e Souza, approved in
February 1st, 2021.

URL of the original document:
<http://urlib.net/8JMKD3MGP3W34R/442G7R2>

INPE
São José dos Campos

2021

http://urlib.net/8JMKD3MGP3W34R/442G7R2

PUBLISHED BY:

Instituto Nacional de Pesquisas Espaciais - INPE
Coordenação de Ensino, Pesquisa e Extensão (COEPE)
Divisão de Biblioteca (DIBIB)
CEP 12.227-010
São José dos Campos - SP - Brasil
Tel.:(012) 3208-6923/7348
E-mail: pubtc@inpe.br

BOARD OF PUBLISHING AND PRESERVATION OF INPE
INTELLECTUAL PRODUCTION - CEPPII (PORTARIA No

176/2018/SEI-INPE):
Chairperson:
Dra. Marley Cavalcante de Lima Moscati - Coordenação-Geral de Ciências da Terra
(CGCT)
Members:
Dra. Ieda Del Arco Sanches - Conselho de Pós-Graduação (CPG)
Dr. Evandro Marconi Rocco - Coordenação-Geral de Engenharia, Tecnologia e
Ciência Espaciais (CGCE)
Dr. Rafael Duarte Coelho dos Santos - Coordenação-Geral de Infraestrutura e
Pesquisas Aplicadas (CGIP)
Simone Angélica Del Ducca Barbedo - Divisão de Biblioteca (DIBIB)
DIGITAL LIBRARY:
Dr. Gerald Jean Francis Banon
Clayton Martins Pereira - Divisão de Biblioteca (DIBIB)
DOCUMENT REVIEW:
Simone Angélica Del Ducca Barbedo - Divisão de Biblioteca (DIBIB)
André Luis Dias Fernandes - Divisão de Biblioteca (DIBIB)
ELECTRONIC EDITING:
Ivone Martins - Divisão de Biblioteca (DIBIB)
Cauê Silva Fróes - Divisão de Biblioteca (DIBIB)

sid.inpe.br/mtc-m21c/2021/01.19.10.57-TDI

SPECIFICATION OF A NEW DATA LINK LAYER
PROTOCOL AND ASSOCIATED “CHANNEL” API FOR
EMBEDDED NETWORKS ONBOARD OF AEROSPACE

VEHICLES

Sérgio Duarte Penna

Doctorate Thesis of the Graduate
Course in Space Engineering and
Technology/Space Systems of
Management and Engineering,
guided by Dr. Marcelo Lopes de
Oliveira e Souza, approved in
February 1st, 2021.

URL of the original document:
<http://urlib.net/8JMKD3MGP3W34R/442G7R2>

INPE
São José dos Campos

2021

http://urlib.net/8JMKD3MGP3W34R/442G7R2

Cataloging in Publication Data

Penna, Sérgio Duarte.
P381s Specification of a new data link layer protocol and associated

“channel” API for embedded networks onboard of aerospace
vehicles / Sérgio Duarte Penna. – São José dos Campos : INPE,
2021.

xxviii + 257 p. ; (sid.inpe.br/mtc-m21c/2021/01.19.10.57-TDI)

Thesis (Doctorate in Space Engineering and Technology/Space
Systems of Management and Engineering) – Instituto Nacional de
Pesquisas Espaciais, São José dos Campos, 2021.

Guiding : Dr.Marcelo Lopes de Oliveira e Souza.

1. Communication protocol. 2. Data Link Layer. 3. Application
Layer. 4. Ethernet. 5. Embedded systems. I.Title.

CDU 629.7.054

Esta obra foi licenciada sob uma Licença Creative Commons Atribuição-NãoComercial 3.0 Não
Adaptada.

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported
License.

ii

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/deed.pt_BR
http://creativecommons.org/licenses/by-nc/3.0/

���������� �����	
�����
���
������������������

������������� �� �!�"�#$����� ���$�%���$����&� ��'�� ������(���$���$()�#*� ��(�$�!��'�$"�$�("����%�+�$*��(�� ������',��
-.�*��/$�(����0 ���

12341454672891628:7;<7=<3>513837<3=891813

?@ABCDEFG@FHIJKLAMGNMDOEK?PHLQF
HIJKLAMGNMDOEF@RFPSPTPUV@UWMACMF@FL@A@UXCMR@UYEFG@F?CJY@RMJFPJZMXCMCJ[

;<\<387\128:7;<74<3<7;<73]̂_167;58̂4<7=<228

ÈFGCMFabFG@Fc@B@A@CAEFG@FdadbeFMJFafWeFZEAFBCG@EXEUc@AgUXCMeFEhMiFMjNUEhMiFR@UXCEUMGEhMiFMXCRMFG@c@UG@NFJ@N
YAMkMjWEFlUMjFhMZA@J@UYMDOEFEAMjFJ@VNCGMFG@FMAVNCDOEiFZ@AMUY@FNRMFmMUXMFPnMRCUMGEAMeFXNoEJFR@RkAEJF@JYOE
jCJYMGEJFMkMCnE[FphqiFMjNUEhMiFcECFqHQprqspFZ@jMFmMUXMFPnMRCUMGEAMeFZEAFt̀ q̀uvusqsPFeF@RFXNRZACR@UYEFME
A@wNCJCYEF@nCVCGEFZMAMFEkY@UDOEFGEFSxYNjEFG@FsENYEAF@RFPUV@UWMACMF@FS@XUEjEVCMFPJZMXCMCJTPUV[FL@A@UX[G@F?CJY@RMJ
PJZMXCMCJ[FpFYAMkMjWEFZA@XCJMFGMFCUXEAZEAMDOEFGMJFXEAA@Dy@JFJNV@ACGMJFZ@jMFmMUXMFPnMRCUMGEAMF@FA@BCJOEFlUMjFZ@jEhJi
ZAIZACEFpAC@UYMGEA[
F
4z{|}~�7�?HP�u�u�qSup̀ Fp�FqF̀P�FsqSqF�ù�F�q�PQFHQpSp�p�Fq̀sFq??p�uqSPsF���q̀ P̀��FqHuF�pQFPvmPssPs
P̀S�pQ�?Fp̀ mpqQsFp�FqPQp?Hq�PFrP�u��P?�
F
PNeFvMNAxXCEFLEUDMjB@JFrC@CAMF�@AA@CAMFeFXEREFHA@JCG@UY@FGMFmMUXMFPnMRCUMGEAMeFMJJCUEF@JYMFqSqF@RFUER@FG@FYEGEJ
EJFR@RkAEJ[
F
�����~�7��7�����F

sA[FvMNAxXCEFLEUDMjB@JFrC@CAMF�@AA@CAMFeFHA@JCG@UY@FùHP[F
sA[FvMAX@jEF�EZ@JFG@FpjCB@CAMF@F?EN�MeFpAC@UYMGEAhMiFùHP[F
sA[FHMNjEFLCMXEREFvCjMUCeFv@RkAEFGMFmMUXMFùHP[F
sA[FQ�RNjEF?CjBMFG@FpjCB@CAMFeF�EUBCGMGEhMiFt�?�[F
sA[FsA[F�@AUMUGEF�EJ�FG@FpjCB@CAMFvEA@CAMeF�EUBCGMGEhMieFPRkAM@A[

sEXNR@UYEFMJJCUMGEF@j@YAEUCXMR@UY@FZEAF��|����~7_~���}���7������7\�������eF9~~������~�7��
�̂�{���~�79~�{�~}�7�7̂������~7��73�{ }�{��eF@RFabTadTdadbeF¡JFb¢£¤¤FhWEA¥ACEFElXCMjFG@FmAMJxjCMie
XERFcNUGMR@UYEFUEFMAY[F¦§eF̈Fb§eFGEFs@XA@YEFU§F©[¤ªfeFG@F©FG@FENYNkAEFG@Fdab¤[

qFMNY@U«XCGMG@FG@JY@FGEXNR@UYEFZEG@FJ@AFXEUc@ACGMFUEFJCY@FW¬Z£TTJ@C[RX«X[VEB[kATB@AClXM[WYRje
CUcEARMUGEFEFXIGCVEFB@AClXMGEAF­®̄°±®±F@FEFXIGCVEF�Q�F²\³��́;­[

µ¶·¶̧¹º»¼½¾¿ÀÁÂÃÄÅÅÂ¿ÆÇ¿ÈÉÊËÈÌÈÈÈÍËÎÏÎÈÎÉÐÑÈ ÒÓÔ¿ÆÇ¿ÕËÖÉÎËÎ

iv

v

“It is our choices [...] that show what we truly are, far more than our abilities”.

Albus Dumbledore in “The Chamber of Secrets”, 1999

vi

vii

To my dear Professor Dr. Marcelo Lopes de Oliveira e Souza and to my Post-

Graduation colleagues at INPE.

viii

ix

ACKNOWLEDGEMENTS

First al all, I would like to thank my dear Professor Dr. Marcelo Lopes de

Oliveira e Souza for his most valuable contribution to the construction of this

thesis. To my colleague of many years, Rui Nelson Almeida, many thanks for

the guidance in the development of applications in C Language. To Doctors

Paulo Giacomo Milani, Alírio Brito and Fabrício Kucinskis, my gratitude for the

revising my texts until the final presentation. To my dearest Post-Graduation

colleagues, Paula Renata Aranha, Graziela Maia, Roberta Porto and Ana Paula

Rabello, my eternal thanks for supporting me during the whole process. To my

first Mentor in R&D, Dr. Atair Rios Neto, my recognition for having encouraged

me in accepting the challenge of post-gradute studies.

x

xi

ABSTRACT

Communication protocols are essential components in complex and highly
integrated systems onboard aerospace vehicles. The implementation of such
type of component in software may demand a high processing cost, should
itself being of high complexity, therefore choosing simpler protocols that allow
tasks which use it execute with the desired efficiency must be part of a good
system development process. This work presents a new Data Link Layer
communication protocol to operate over Ethernet physical medium, and a
new virtual communication resource called “channel” for accessing the
protocol directly from the Application Layer, illustrated by a case study
demonstrating the most relevant aspects of the proposal..

Keywords: communication protocol, Data Link Layer, Application Layer,
Ethernet, embedded systems, aerospace vehicles.

xii

xiii

ESPECIFICAÇÃO DE UM NOVO PROTOCOLO DE CAMADA DE ENLACE E

SUA INTERFACE DE PROGRAMAÇÃO “CHANNEL” PARA REDES

EMBARCADAS EM VEÍCULOS AEROESPACIAIS

RESUMO

Protocolos de comunicação são componentes essenciais em sistemas
complexos e altamente integrados embarcados em veículos aeroespaciais. A
implementação deste tipo de componente em software pode demandar um alto
custo de processamento, caso ele próprio seja de alta complexidade, portanto
buscar protocolos mais simples para que as tarefas que o utilizam executem
com a eficiência desejada faz parte de um bom de projeto de desenvolvimento
de sistemas. Este trabalho apresenta um novo protocolo de comunicação para
a Camada de Enlace que usa o meio-físico Ethernet, com recursos adicionais
de seqüenciamento de transmissão, temporização e integridade de dados, e
um novo recurso virtual de comunicação denominado de “canal” para acesso a
este protocolo a partir da Camada de Aplicação, ilustrado por um caso de
estudo demonstrando os aspectos mais relevantes da proposta.

Palavras-chave: protocolo de comunicação, Camada de Enlace, Camada de
Aplicação, Ethernet, sistemas embarcados, veículos aeroespaciais.

xiv

xv

LIST OF FIGURES

Page

Figure 2.1 – Elementary computer network topologies. 9

Figure 2.2 – ISO/OSI Layered Communication Model. 11

Figure 2.3 – IEEE 802.3 Frame format. .. 14

Figure 2.4 – IEEE 802.3 Frame with IEEE 802.2 LLC field. 16

Figure 2.5 – IEEE 802.2 LLC Fields. .. 17

Figure 2.6 – IEEE 802.2 Address Fields. ... 18

Figure 2.7 – IEEE 802.2 PDU Control Field. .. 19

Figure 2.8 – Type 1 operation command control field bit assignments. 20

Figure 2.9 – Type 1 operation response control field bit assignments. 20

Figure 2.10 – Typical MIL-STD-1553B bus topology. 39

Figure 2.11 – MIL-STD-1553B word formats .. 40

Figure 2.12 – Typical MIL-STD-1553 bus topology in a military aircraft. 41

Figure 2.13 – MIL-STD-1553B bus in the CBERS Satellite. 42

Figure 2.14 – OBDH-485 buses for the SMU of the Spacebus 4000 satellite. . 44

Figure 2.15 – CAN-bus upgrade proposal for the Spacebus 4000 satellite. 45

Figure 3.1 – “Process Level Communication” according to Cerf and Kahn. 51

Figure 3.2 – A direct path from Application Layer to Data Link Layer. 54

Figure 3.3 –The “channel” concept connecting Application Layers. 55

Figure 3.4 –The SOIS communication architecture. ... 56

Figure 3.5 –SOIS deployment schemes. .. 57

Figure 4.1 –The “channel” concept connecting Service Access Points. 60

Figure 5.1 – MAC Source address formatting. ... 68

Figure 5.2 – Unicast MAC Destination address formatting. 68

Figure 5.3 – Equipment Codes per ARINC-429 specification (extract). 69

Figure 5.4 – MAC destination multicast address formatting. 70

Figure 5.5 – IEEE 802.2. DSAP and SSAP numbers formatting. 71

Figure 5.6 – IEEE 802.2. Control field formatting. .. 71

Figure 5.7 – IEEE 802.2 extended 32-bit header and new 32-bit header. 74

Figure 5.8 – IEEE 802.2 PDU encapsulated in IEEE 802.3 data packet. 75

xvi

Figure 5.9 – Example of single-point channels. .. 79

Figure 5.10 – Example of a multi-point channel. .. 79

Figure 5.11 – Protocol services on a transmitting node. 83

Figure 5.12 – Protocol services on a receiving node. 84

Figure 5.13 – Static route definitions on a star topology. 85

Figure 5.14 – Static route definitions on a point-to-point topology. 86

Figure 5.15 – Sample routing scenario on a star topology. 88

Figure 5.16 – Sample routing scenario on a point-to-point topology. 89

Figure 5.17 – Sample network configuration files. .. 96

Figure 5.18 – Node Identification Block and associated structures. 99

Figure 5.19 – Service Identification Block and associated structures. 100

Figure 5.20 – Channel Control Block and associated structures. 102

Figure 5.21 – Service Hosting Block and base register. 103

Figure 5.22 – Port Assignment Block and associated structures. 104

Figure 5.23 – Configuration Identification Block and its base register. 105

Figure 5.24 – Configuration Base Block and its summary register. 106

Figure 5.25 – BSD socket and the “channel” API for a client application. 120

Figure 5.26 – BSD socket and the “channel” API for a server application. 121

Figure 5.27 – Cache layout for data packet routing. 126

Figure 5.28 – Port Map for caching Destination MAC to port number. 127

Figure 5.29 – VLAN programming example for the network in Figure 5.13. ... 128

Figure 6.1 – The “channel”: a virtual connection at the Application Layer. 129

Figure 6.2 – Simple network topology for validating the “channel” concept. ... 130

Figure 6.3 – Test case for validating the “channel” concept. 136

Figure 6.4 – XML configuration files for nodes CPM1 (left) and CPM2 (right). 136

Figure 6.5 – Wireshark screen for first record with SN = 0. 154

Figure 6.6 – Wireshark screen for first record with SN = 1. 155

Figure 6.7 – Wireshark screen for first record with SN = 2. 156

Figure A.1 – “Delay bound” as modeled by Network Calculus. 177

Figure A.2 – Switch output for two incoming frames F1 and F2. 178

Figure A.3 – Switch output for F2 split in two shorter frames. 178

Figure A.4 – Switch output for frame F2 (alternative scenario)....................... 179

xvii

Figure A.5 – “Critical instant” for incoming frames F1, F2 and F3. 180

Figure A.6 – Transmission delay for frames F1, F2 and F3. 181

Figure A.7 – Frames F1, F2, F3, F4, F5 and F6 illustrated............................. 182

Figure A.8 – “Critical instant” and “transmission backlog” for frame F4. 182

Figure A.9 – Worst case scenario for frame F4. ... 184

Figure A.10 – Transmission schedule for frame F4. 185

Figure A.11 – Network analyzed by Zhao et al. (2013). 186

Figure A.12 – Output flow v1* for v1 exiting e1 (not in scale). 187

Figure A.13 – Maximum delay of v1* exiting S1 (not in scale). 187

Figure A.14 – Transmission schedule scenarios for frame v1. 188

Figure A.15 – End-to-end delay for frame v1 under Proposition 2. 188

Figure A.16 – End-to-end delay for flow v1 using “AFDX_Designer”. 190

xviii

xix

LIST OF TABLES

Page

Table 2.1 – Services at different ISO/OSI protocol layers. 25

Table 2.2 – Industry standard digital communication protocols. 49

Table 2.3 – Digital communication protocols for space applications. 50

Table 4.1 – Feature comparison. .. 66

Table 5.1 – LLC registered (SAP) numbers.. 76

xx

xxi

LIST OF ACRONYMS AND ABBREVIATIONS

AFDXTM Avionics Full-Duplex Switched Ethernet (Airbus Industries)

API Application Programming Interface

ARINC Aeronautical Radio Incorporated

ARPA Advanced Research Project Agency

ANSI American National Standards Institute

BAG Bandwidth Allocation Gap (defined in ARINC-664 Part 7 – AFDXTM)

BSD Berkeley Software Distribution

CAN Controller Area Network (Robert Bosch)

CCSDS Consultative Committee for Space Data Systems

CBERS China-Brazil Earth Resource Satellite

CRC Cyclic Redundancy Check

DARPA Defense Advanced Research Project Agency

DCP Digital Communication Protocol

DoD Department Of Defense (USA)

DSAP Destination Service Access Point

ECSS European Cooperation for Space Standardization

ESA European Space Agency

FIFO First-In-First-Out

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronic Engineers

INPE Instituto Nacional de Pesquisas Espaciais (Brazil)

IMA Inegrated Modular Avionics

ID Identification

IP Internet Protocol

ISO International Standards Organization

JAXA Japan Aerospace Exploration Agency

LAN Local Area Network

LLC Logical Link Control (part of the ISO/OSI Data Link Layer)

MIL-STD Military Standard

MAC Media Access Control (part of the ISO/OSI Data Link Layer)

xxii

MTU Maximum Transfer Unit (defined by the Internet Protocol – IP)

NASA National Aeronautics and Space Administration (USA)

OBDH On-Board Data Handling

OSI Open Systems Interconnect (affiliated to ISO)

OUI Organizationally Unique Identifier

PARC Palo Alto Research Center (part of XEROX Corporation)

PCAP Packet Capture (defined by the Wireshark application)

PDU Protocol Data Unit (defined by IEEE 802.2)

RFC Request For Comments (to the Internet Task Force)

RS Recommended Standard

SAE Society of Automotive Engineers

SAP Service Access Point

SN Sequence Number

SNAP Subnetwork Access Protocol

SSAP Source Service Access Point

TCP Transmission Control Protocol

TTP Time-Triggered Protocol

UDP User Datagram Protocol

UI Unnumbered Information (type of PDU)

VL Virtual Link (part of ARINC-664 Part 7 – AFDXTM)

VLAN Virtual Local Area Network

xxiii

SUMMARY

Page

1 INTRODUCTION ... 1

1.1 Context and motivation .. 1

1.2 Objective .. 3

1.3 Originality, generality and usefulness .. 4

1.4 Organization .. 5

2 BASIC CONCEPTS AND LITERATURE REVIEW 7

2.1 Basic concepts and industry standards.. 7

2.1.1 Computer network architectures ... 7

2.1.2 The ISO/OSI layered communication model 11

2.1.3 IEEE 802.3 standard for ethernet .. 13

2.1.4 IEEE 802.2 logical link control ... 16

2.1.5 Internet Protocol (IP) ... 21

2.2 Embedded networks .. 22

2.2.1 Data producers and data consumers .. 23

2.2.2 Essential services in embedded networks ... 24

2.2.3 Essential characteristics of embedded network protocols 27

2.3 Digital Communication Protocols ... 29

2.3.1 ARINC-429 .. 29

2.3.2 ARINC-664 Part 7 (AFDXTM) ... 30

2.3.3 SpaceWire ... 35

2.3.4 MIL-STD-1553B .. 38

2.3.5 Serial communication .. 43

2.3.5.1 RS-232 ... 43

2.3.5.2 RS-422 ... 43

2.3.5.3 RS-485 ... 43

2.3.6 Shared medium ... 44

2.3.6.1 CAN ... 44

2.3.6.2 ARINC-629 ... 45

2.3.7 Time-triggered ... 45

xxiv

2.3.7.1 TTP .. 45

2.3.7.2 TTEthernet ... 46

2.3.7.3 FlexRay .. 47

2.4 Comparing digital communication protocols .. 47

3 PROBLEM STATEMENT AND APPROACH TO A SOLUTION 51

3.1 High-level approach used for developing the Internet Protocol 51

3.2 Problem statement ... 52

3.3 Approach to solving the current problem ... 53

4 KEY OBJECTIVES FOR THE NEW PROTOCOL AND SERVICES 59

4.1 Connect data producers to data consumers .. 59

4.2 Support mixed topologies .. 60

4.3 Provide timing information ... 61

4.4 Provide payload and header data integrity ... 62

4.5 Provide routing validation ... 62

4.6 Provide an operating system interface ... 62

4.7 Protocol specification breakdown .. 64

4.8 Side-by-side comparison ... 65

5 PROTOCOL SPECIFICATION .. 67

5.1 Specification of the new UI and TEST Protocol Data Units (PDUs) 67

5.1.1 IEEE 802.3 MAC source and unicast destination address formatting . 67

5.1.2 IEEE 802.3 MAC destination multicast address formatting 69

5.1.3 IEEE 802.3 MAC destination broadcast address 70

5.1.4 IEEE 802.3 length field .. 70

5.1.5 IEEE 802.2 DSAP and SSAP fields .. 70

5.1.6 IEEE 802.2 Control field .. 71

5.1.7 Extended header for DSAP sequence number (UI PDUs) 72

5.1.8 Extended header for hop count (TEST PDUs) 72

5.1.9 Extended header for time-stamping and header-CRC (UI PDUs) 73

5.1.10 New payload CRC (UI PDUs) .. 74

5.1.11 Unique characteristic of the new data link Layer protocol 75

5.2 Specification of the associated services on UI PDUs 77

5.2.1 Data validation .. 77

xxv

5.2.2 Introducing the concept of “channel” ... 78

5.2.3 Traffic shaping ... 80

5.2.4 Traffic policing ... 81

5.2.5 Taking into account transmission delays ... 82

5.2.6 Summary of protocol services for UI PDUs on network nodes 83

5.3 Routing validation using TEST PDUs .. 84

5.3.1 Definition of static routes ... 84

5.3.2 Route validation .. 87

5.3.3 Sample route validation on a star network topology 88

5.3.4 Sample route validation on a point-to-point network topology 89

5.4 Specification of the operating system interface to the protocol layers 90

5.4.1 Network node configuration file ... 91

5.4.1.1 Configuration identification ... 91

5.4.1.2 Node identification ... 92

5.4.1.3 Service identification .. 92

5.4.1.4 Channel identification ... 93

5.4.1.5 Service to host configuration .. 94

5.4.1.6 Port to endpoint configuration .. 94

5.4.1.7 Sample configuration files .. 95

5.4.2 In-memory data structures .. 97

5.4.2.1 Naming conventions .. 98

5.4.2.2 Node Identification Block (NIB) .. 98

5.4.2.3 Service Identification Block (SIB) ... 100

5.4.2.4 Channel Control Block (CCB) .. 100

5.4.2.5 Service Hosting Block (SHB) ... 102

5.4.2.6 Port Assignment Block (PAB) .. 103

5.4.2.7 Configuration Identification Block (CIB) ... 105

5.4.2.8 Configuration Base Block (CBB) .. 105

5.4.3 Channel application programming interface 106

5.4.3.1 REGISTER ... 107

5.4.3.2 OPEN ... 108

5.4.3.3 SEND ... 110

xxvi

5.4.3.4 RECEIVE ... 111

5.4.3.5 STATUS ... 112

5.4.3.6 CLOSE ... 114

5.4.3.7 UNREGISTER ... 115

5.4.3.8 Operating system specific functions ... 116

5.4.3.9 The “channel” concept and the BSD socket interface 120

5.4.4 Route testing programming model .. 122

5.4.5 UI and TEST PDU routing programming model 124

5.4.6 Network traffic switching .. 127

6 EXPERIMENTAL RESULTS USING THE CONCEPT OF “CHANNEL” .. 129

6.1 Introduction .. 129

6.2 Scenario for the test case .. 129

6.3 Network topology ... 130

6.4 Network nodes configuration ... 131

6.5 Channel configuration .. 131

6.6 Test case description ... 131

6.6.1 Role of node CPM1 ... 131

6.6.2 Role of node CPM2 ... 134

6.6.3 Test case illustrated .. 135

6.6.4 Configurarion files ... 136

6.6.5 Implementation details .. 137

6.6.6 CPM1 application source code (extract) .. 137

6.6.7 CPM1 application output commented.. 139

6.6.7.1 Initialization .. 139

6.6.7.2 REGISTER and OPEN function calls ... 140

6.6.7.3 SEND function calls ... 141

6.6.7.4 STATUS function call ... 144

6.6.7.5 CLOSE and UNREGISTER function calls 144

6.6.8 CPM2 application source code (extract) .. 145

6.6.9 CPM2 application output commented.. 147

6.6.9.1 Initialization .. 147

6.6.9.2 REGISTER and OPEN function calls ... 148

xxvii

6.6.9.3 RECEIVE function calls.. 149

6.6.9.4 STATUS function call ... 152

6.6.9.5 CLOSE and UNREGISTER function calls 152

6.6.10 Frame validation using Wireshark Generic Dissector 152

6.6.10.1 First record: UI PDU sequence number 0 154

6.6.10.2 Second record: UI PDU sequence number 1 155

6.6.10.3 Third record: UI PDU sequence number 2 156

6.7 Summary ... 157

7 CONCLUSIONS, CONTRIBUTIONS AND SUGGESTIONS 159

7.1 Conclusions ... 159

7.2 Summary of contributions .. 160

7.3 Suggestions for further studies .. 160

BIBLIOGRAFIC REFERENCES ... 163

APPENDIX A – A NEW METHOD FOR ESTIMATING WORST CASE

TRANSMISSION DELAY IN SWITCHED ETHERNET NETWORKS 171

APPENDIX B – CONFIGURING A WIRESHARK GENERIC DISSECTOR ... 193

APPENDIX C – NODE CONFIGURATION FILES ... 195

APPENDIX D – SOURCE CODE LISTINGS .. 197

APPENDIX E – TEST CASE FULL TEXT OUTPUTS 253

xxviii

1

1 INTRODUCTION

1.1 Context and motivation

Connecting people seems to be the most important consequence of a

technology asset which began its development back in the 19th century with the

telegraph. The ability of communicating facts over a physical medium beyond

line-of-sight changed the face of the world.

“Communication”, according to a web dictionary (MERRIAN-WEBSTER, 2019),

is “a process by which information is exchanged between individuals through a

common system of symbols, signs, or behavior”. However, to what purpose one

or more individuals would use communication? According to other web

dictionary (LEXICO, 2019), here is a very good reason: “the successful

conveying or sharing of ideas and feelings”.

Therefore, communication needs not only to be effective allowing two parties to

connect, but it also needs to convey the correct fact or data.

Surprisingly at first, for electronic control systems embedded in modern

vehicles, be it a car, bus, train, aircraft or spacecraft, communication is not only

essential, but vital to their safe operation. Communication is what binds devices

together forming a complex network of specialized functions.

In the early stages of the development of electronic control systems, processing

was done by a single complex device, such as the trajectory control system of

the V2 rocket developed by the Germans during the World War II. Every step of

processing and resulting action on V2’s rocket engine and tail fins was

performed by a unit called LEV-3 (STAKEM, 2010) and an analog computer

designed by Helmut Hoelzer, an electrical engineer (EDISON TECH CENTER,

2019). Very little communication was necessary, all of it in the analog world.

Communication using analog signals (current or voltage) prevailed until the

advent of the microprocessor. An early case of data being communicated using

digital signals was in the AGC - Apollo Guidance Computer (HALL, 1996).

Digital Communication Protocols (DCP) for the aerospace industry started being

standardized in the beginning of the 70’s and were firstly used in military

aircraft, namely the F-16 Falcon, then lately in space applications as well, such

2

as the Space Shuttle and the International Space Station (GOFORTH et al.,

2014).

The specification of a DCP usually describes the way digital information, that is,

binaries 1 and 0, are encoded in the transmission medium and, at a higher

level, how a finite collection of binary digits is to be interpreted by the

communicating parties. The term “protocol” refers to the rules that apply for

interpreting binary information transported by a DCP.

DCPs started being used in commercial aircraft which flew for the first time in

the beginning of the 80’s, Boeing 767 and Airbus A320, to name two pioneer

users, with the introduction of the Integrated Modular Avionics (IMA) concept

(TAGAWA et al., 2011).

DCPs proved very important as electronic control systems became more and

more complex, as more complex functions could be accommodated because of

more and more powerful microprocessors. They evolved, as the topology of

these systems changed for every new vehicle depending on how control

functions were physically allocated in electronic units.

More recently, changing from more concentrated to more distributed allocation

of functions in electronic control systems (WATKINS, 2007) has driven very

important changes in DCP technologies.

There was also an interesting migration of DCPs from one industry field to

another: from aircraft to automotive, from automotive to aircraft, from aircraft to

space, from space to aircraft, from Information Technology to manufacturing

floor.

The aerospace industry has become particularly sensitive to time and costs of

developing and launching a new artifact. This is aligned with recent trends in the

industry in general with the “Lean Production System” (KRAFCIK, 1988), and in

the space industry with the “faster-better-cheaper” initiative pushed by Daniel

Goldin (NASA, 2009).

In the space industry, the traditional demand for highly reliable space systems

had driven high costs, longer life cycles and fewer missions. This tendency was

described by Wertz (2010) as the “Space Spiral”.

3

The “New Space” approach, as reviewed by Koechel et al. (2018), now favors

less reliable space systems, but with more missions of lower costs and shorter

life cycles. In short, “New Space” expects to provide the same service to

customers spending fewer resources in its development and in its operational

life. Migrating DCPs matured in other industry fields to the space industry

seems to follow this approach.

DCP evolution does not show signs of interruption, as new data processing and

data communication scenarios are created for new vehicles and new industry

fields. The very evolution of the architectures used in systems designed for

aerospace vehicles toward a more integrated modular architecture is a key

driver for the introduction of new DCPs (FUCHS, 2012).

Even after so many years of developing communication solutions, there is still

room for innovation.

The core motivations of this work are:

1) There is still space for new ways of combining characteristics that are

present in one and absent in another DCP to better serve systems

installed onboard of aerospace vehicles of small and medium sizes;

2) The software interface for accessing a DCP is often proprietary and has

a high acquisition cost associated with it;

3) The most frequently used communication protocol in our days, the

Ethernet, has found its way as a DCP in space applications (SEPHY,

2015) after being under study since as early as 2002 (WEBB, 2002).

1.2 Objective

The main objective of this work is the specification of a new Data Link Layer

protocol and a new virtual communication resource called “channel” for

accessing the protocol from the Application Layer for embedded networks

onboard of aerospace vehicles

4

This new Data Link Layer is an extension of the IEEE-802.2 protocol presenting

the following additional qualities:

• It accepts mixed network topologies;

• It provides transmission sequencing and timing information as part of the

Protocol Data Unit;

• It has extended data integrity information when compared to other known

protocols;

• It provides validation of physical routes in mixed network topologies.

This new “channel” virtual communication resource presents the following

qualities:

• It defines a standard software interface for accessing the new Data Link

Layer protocol with a high level of abstraction;

• It provides data flow control supported by a means of estimating end-to-

end delay experienced by a protocol data unit while traversing the

network from its origin to its final destination.

1.3 Originality, generality and usefulness

The new Data Link Layer protocol presented in this work is original in the way it

combines characteristics that are present in some communication protocols and

absent in others to better serve systems installed in aerospace vehicles,

supporting mixed topologies, providing additional transmission sequencing and

timing information, as well as additional data integrity information. The

associated “channel” resource offers a standard application programming

interface for accessing the new protocol.

It is generic enough to be implemented on top of any hardware and software

environment supporting the Ethernet IEEE-802.3 physical medium.

Its usefulness comes from offering a higher speed data communication means

when compared with other more traditional communication protocols used in

space applications, such as the MIL-STD-1553B (MIL STANDARD, 2020), and

from being less costly to implement than ARINC-664 Part 7 (ARINC, 2009) in

smaller aircraft.

5

1.4 Organization

The organization of this work is as follows:

• Chapter 2 introduces the basic concepts and associated literature

required for the correct understanding of this text; it also reviews the

characteristics of digital communication protocols which are relevant to

this work and introduces important characteristics of networks serving

embedded systems;

• Chapter 3 formulates the problem and presents one approach to its

solution;

• Chapter 4 introduces the key objectives of the new Data Link Layer

protocol;

• Chapter 5 details the specification of the new Data Link Layer protocol

and the application programming interface for the “channel” virtual

communication resource;

• Chapter 6 presents the implementation of a relevant case study and its

results;

• Chapter 7 presents the conclusions and suggestions for further studies;

• The Appendices present complementary materials, such as details of the

algorithm used for traffic control, configuration files, source code listings

and the results generated by the case study in text format.

6

7

2 BASIC CONCEPTS AND LITERATURE REVIEW

2.1 Basic concepts and industry standards

The next five sections introduce basic networking concepts, associated industry

standard literatures which are relevant to this work.

2.1.1 Computer network architectures

The correct understanding of this work requires some knowledge of

architectures used in building computers networks (TANNENBAUM, 1989). In

this section, the term “node” will be used freely to represent a single computer

in a computer network.

Connecting computers became a necessity in the mid 70’s for a few reasons,

but one very important: computers were very expensive, therefore sharing

resources became strategic. If you needed to expand, it made more sense to

acquire another computer tailored to your needs than to replace the one you

already had by a bigger model. Luckily, computers those days enjoyed a quite

long operational life: they remained operating for several years (quite commonly

for 5 to 10 years).

Large computer networks appeared in the mid 80’s, when computers became

smaller in size and less expensive.

In the early 70’s, it was already possible to connect two geographically

separated computers using a private channel. The most common realization of

this means of communication was over a telephone line. Binary digits were

transformed into electric signals by a device called “modem”, which basically

modulated an electric signal on transmission and demodulated it on reception

(hence the name “modem” – agglutination of “modulator/demodulator”).

This “point-to-point” communication was enough for connecting two computers.

If a third or fourth computer were involved, data had to be received and

retransmitted to the next network node.

Even today, point-to-point communication is still used, in particular in the

aerospace domain. In the late 70’s, a large computer network using point-to-

point communication was created by the Advanced Research Projects Agency

(ARPA) of the United States’ Department of Defense (DoD).

8

In 1973, XEROX Corporation developed a technical solution for connecting

multiple computers influenced by a computer networking experiment conducted

at the University of Hawaii: the “ALOHAnet”. Using a coaxial cable, the

“Ethernet” cable, multiple computers at XEROX PARC laboratory could share a

common physical medium, allowing any node to directly communicate with any

other node in the network, a significant improvement over point-to-point

communication (PERLMAN, 1999).

This shared medium arrangement had already posed a challenge to the

creators of ALOHAnet: the recovery from the event of two computers “colliding”

as they tried to transmit data at the same time. The researchers at the

University of Hawaii came up with a simple protocol which inspired XEROX in

the implementation of similar technique for properly handling these events:

after failing to transmit by detecting a “collision”, the computers would have to

wait a random chosen time interval before retrying.

This shared medium networking technology developed by XEROX attracted the

attention of Digital Equipment Corporation and Intel. These three companies

formed a consortium referred to as “DIX” and eventually introduced

commercially the Ethernet technology as we know today.

In the mid 80’s, IBM adopted a design developed by researchers at the

Cambridge University which arranged computers in a “ring”. This ring was

formed by connecting computers point-to-point – the first to the second, the

second to the third and so on – and closing the ring by connecting the last node

to the first node (PERLMAN, 1999).

The transmission of data in this ring required the ownership of a special piece of

data called “token”: only the computer in the possession of the token was

allowed to transmit. After transmitting, the computer would then pass the token

to its neighboring computer in the ring (IBM, 2013).

Ethernet evolved and managed to move away from the coaxial cable because it

became a technical issue as computers in a network grew in number: cable

lengths were limited and one would need eventually to replace the cable when

the number of computers connected exceeded the limit allowed by a particular

cable length.

9

Devices called Ethernet “hubs” were developed, partly introducing a return to

the point-to-point scheme of earlier computer networking days. Instead of

connecting to a coaxial cable, computers using Ethernet would connect point-to-

point to this Ethernet hub. This hub worked as a collapsed form of the traditional

Ethernet cable. Installation and reinstallation of computers in an Ethernet

network were facilitated and Ethernet hubs became commercially available with

8, 16 or more connection ports.

Ethernet hubs eventually turned into the Ethernet switches we recognize today

in almost every household as part of the access-point hardware delivered by

Internet service providers.

Occasionally, hubs were also called “star couplers” to denote the physical

resemblance of computers connected to a hub and a planetary system, where

planets are tied to a star by gravitational forces.

Today, the term “topology” is commonly used to describe how computers are

arranged in networks. Computer network topologies were a consequence of

technical decisions made by academic researchers and engineers trying to find

solutions for real problems. Figure 2.1 summarizes elementary computer

network topologies: a) Point-to-point; b) Shared Bus or simply Bus; c) Ring; d)

Star. Naturally, more complex topologies can be obtained by combining one or

more of these four.

Figure 2.1 – Elementary computer network topologies.

Another important component of computer network architectures is the

communication medium access control. It was mentioned before that Ethernet,

a bus topology in its origin, allowed for any two computers to start transmitting

at any time and that a token was used to grant the privilege of transmitting in a

ring topology to the computer which owns it. In short, access control to the

S

bus

point-to-point

ring star

10

physical communication medium in computer networks can be done either: a)

by using an arbitration protocol, which allows for one and only one transmission

at any given point in time; b) by using no arbitration protocol, but providing a

recovery mechanism in the event of a failed transmission.

Most computer networks operate over metallic of fiber-optic cables, but

electromagnetic waves are also another viable medium. While the first can be

constructed tolerant to electronic noise and harsh environments, open-air – or

“wireless” – transmissions suffer greatly in the presence of natural phenomena,

such as atmospheric discharges and heavy rain, and other radio transmissions

from nearby sources.

The physical nature of the communication medium drives variations on the way

access to the medium is controlled. For instance, wireless transmissions tend to

avoid “collisions” as observed in the original Ethernet technology instead of

reacting to them.

More recently, data security has become a great concern in computer networks

operating in commercial aircraft because of the fear of “hacking”, that is, a

malicious attack which may result in loss of property and/or human lives.

Networks which operate over cables, metallic or non-metallic, are more immune

to attacks because it is necessary to have physical access to the network

hardware. Networks which operate wireless can be protected against hacking

by using encryption of data, but may still suffer in the presence of high-power

electromagnetic transmissions causing what it is commonly called “denial-of-

service”.

One could argue that the term ”architecture” should be used exclusively when

speaking about “form”, that is, what can be observed by the naked human eye.

The term architecture in computer networks could limit the discussion around

topologies only, which indeed define the form of a computer network. The

careful reader will note however that this section, besides enumerating

topologies, addresses also the physical medium and the type of control used in

accessing it. The reason is simple: computer networks were conceived,

implemented and perfected by combining these three elements: a) topology; b)

physical medium; c) access control to physical medium. While the first one

11

provides a high-level perspective of the network, as it dictates its form, the latter

two elements are its lowest levels.

Researchers in Academia and Industry wrote the history of computer networks

in the 70’s and in the 80’s. Today, we benefit from their hard pioneer intellectual

work.

2.1.2 The ISO/OSI layered communication model

The Open Systems Interconnection model is a product of a project conducted

by the International Standards Organization (ISO) and was published as a

standard (7498) in 1984 (ISO, 1994).

It describes a seven-layer abstraction communication model, where one layer

has to be concerned only with the interface to the layer immediately above it,

which it serves, and the interface with the layer immediately below it, which it is

served by.

Figure 2.2 – ISO/OSI Layered Communication Model.

Source: Adapted from ISO (1994).

12

The seven layers illustrated by Figure 2.2 are:

Layer 1: Physical Layer (lowest)

The physical layer is responsible for the transmission and reception of

encoded binary digits over a transmission medium. Examples of Layer 1

protocols are IEEE 802.3 and Ethernet physical layers, serial transmission

protocols such as RS-232, Universal Serial Bus (USB), IBM’s Bluetooth,

among others.

Layer 2: Data Link Layer

The data link layer provides actual data transfer between two directly

connected nodes. Examples of Layer 2 protocols are IEE 802.3 (combined

with IEEE 802.2 LLC) and Ethernet data link layers, Asynchronous Transfer

Mode (ATM) for audio and video streaming, among others.

Layer 3: Network Layer

The network layer provides the transferring of variable length data structures

(usually called “packets”) from one node to another. The most famous

example of a Layer 3 protocol is the Internet Protocol (IP), but others can be

accounted for, such as Apple’s Appletalk, Novell’s Internetwork Packet

Exchange (IPX) and Digital Equipment Corporation’s DECnet.

Layer 4: Transport Layer

The transport layer provides the transferring of arbitrary length data

sequences adding extra services such as segmentation (dividing a sequence

into smaller pieces for transmission), error detection and recovery. Examples

of Layer 4 protocols are Transmission Control Protocol (TCP), User

Datagram Protocol (UDP) and Novell’s Sequenced Packet Exchange (SPX).

Layer 5: Session Layer

The session layer provides establishing, managing and terminating virtual

“connections” between a local and a remote application. Real-time Transport

Protocol (RFC 3550) developed for audio and video streaming over IP is one

of the few true Layer 5 protocols.

13

Layer 6: Presentation Layer

The presentation layer helps bridging different syntax and semantics

between two Application Layer applications. One of the few Layer 6 protocol

examples is the Multi-purpose Internet Mail Extensions (MIME), which allows

for sending non-textual attachments over e-mail.

Layer 7: Application Layer (highest)

The application layer is the OSI layer closest to an end user software

application. There is a multitude of Layer 7 protocols in use today: Hypertext

Transfer Protocol (HTTP) used in the World-Wide-Web, File Transfer

Protocol (FTP), Simple Mail Transfer Protocol (SMTP), Simple Network

Management Protocol (SNMP) and Telnet, all of them operating over IP.

The most frequent implementations of network protocols usually concentrate in

the first four lower layers and the uppermost layer.

Physical Layer protocols implementing serial point-to-point communication,

such as those belonging to the “Recommended Standard” (RS) family, are used

for a multitude of upper layer protocols. Universal Serial Bus (USB) is another

example rich example of flexibility, used for connecting portable storage

devices, microphones, loudspeakers, video cameras, keyboards, pointing

devices to personal computers, cell phones and modern TV sets.

For most applications, it is sufficient connecting directly the Data Link Layer to

the Application Layer, that is, once the application receiving the data is

identified, it should get it with as little processing delay as possible.

2.1.3 IEEE 802.3 standard for ethernet

The Ethernet protocol for networking communication developed by XEROX in

1973 was embodied by the IEEE 802.3 standard published in 1985 (IEEE,

2012). As Ethernet, it covers the first two layers of the ISO/OSI Layered model:

Layer 1 “Physical Layer” – standardizes all sorts of physical medium, from

copper cables in various forms to fiber-optic cables, from transmission speeds

starting at 10 megabits per second to 200 gigabits per second.

Layer 2 “Data Link Layer” – standardizes two sub-layers, the “Media Access

Control” (MAC), basically the “Carrier Sense Multiple Access with Collision

14

Detection” (CSMA/CD) method devised by XEROX for Ethernet, and the

“Logical Link Control” (LLC) subject of the IEEE 802.2 standard (IEEE, 1998).

The IEEE 802.3 standard introduced a few changes in the original Ethernet data

packet layout as illustrated in Figure 2.3. This new layout of the IEEE 802.3

data packet was a result of the standardization committee efforts in adding

certain connection services directly into the Data Link Layer instead of leaving it

to upper layers as Ethernet does (see next section).

The first 8 bytes of the Ethernet preamble, a fixed sequence of bits used to

identify the beginning of a valid data packet after an idle period in the

transmission medium, was divided in the IEEE 802.3 standard into two fields: a

7-byte “Preamble” copied from the first 7 bytes of the original Ethernet preamble

and a 1-byte “Start-of-Frame-Delimiter” copied from the last 1 byte of the

original Ethernet preamble.

The next 12 bytes following the Preamble, however, remained the same. The

first 6 bytes are used by Ethernet and IEEE 802.3 as the “Destination Address”

of the targeted MAC sub-layer, as the next 6 bytes, which are used as the

“Source Address” of the sending MAC sub-layer.

Figure 2.3 – IEEE 802.3 Frame format.

Source: IEEE (2012).

15

The bit transmitting order in both Ethernet and IEEE 802.3 is least-significant bit

first and the first 2 bits to be decoded by the receiving end have a special

meaning in both standards. The first bit determines whether the MAC

Destination Address is an “individual” (unicast transmission) or “group“

(multicast transmission). The second bit determines whether the MAC

Destination Address is “locally administered” or “globally administered”. An all-

1s MAC Destination Address (0xFFFFFFFFFFFF) is interpreted as a broadcast

transmission.

It is important to point out that MAC addresses have a building rule according to

IEEE, which includes a leading 3-byte field called “Organizationally Unique

Identifier” (OUI). Each company manufacturing devices that can be attached to

an Ethernet or IEEE 802.3 network uses its own OUI to uniquely identify each

piece of equipment produced. Since OUI occupies the first 3 bytes of the MAC

address, it is usually a number multiple of 4 (with a few exceptions). This is

rather convenient, for it leaves untouched the first 2 LSBs which have the

special use just described.

The following 2-byte field used by Ethernet as “Type” (the “Ethertype”) to define

what sort of upper layer protocol was carried by the data packet was used in the

IEEE 802.3 standard either as “Length” or as “Type” in a clear attempt to

reconcile the intention of the IEEE standardization committee in embedding the

identification of the protocol carried by the data packet into the Data Link Layer

and the already existing large customer base Ethernet in the beginning of the

80’s.

This “reconciliation” rule is simple, as stated in the IEEE 802.3 standard

document (IEEE, 2012):

a) If the value of this field is less than or equal to 1500 decimal (0x05DC

hexadecimal), then the Length/ Type field indicates the number of MAC client

data octets contained in the subsequent MAC Client Data field of the basic

frame (Length interpretation).

b) If the value of this field is greater than or equal to 1536 decimal (0x0600

hexadecimal), then the Length/Type field indicates the Ethertype of the MAC

client protocol (Type interpretation).

16

The Length and Type interpretations of this field are mutually exclusive.

As a measure of how infrequent is the use of the Length interpretation, suffice it

to say that the Internetworking Protocol known to us as IP has a Type of value

0x0800 hexadecimal, therefore falling in the case (b) above.

The embedding of the identification of the protocol carried by IEEE 802.3

packets when the Type/Length field is interpreted as Length is covered by the

IEEE 802.2 standard addressed in the next section.

Figure 2.4 – IEEE 802.3 Frame with IEEE 802.2 LLC field.

2.1.4 IEEE 802.2 logical link control

This IEEE 802.2 standard (IEEE, 1998) is not new. Its first supplements were

published in 1993. The last and final version was published in 1998. It covers

the “Logical Link Control” (LLC) sub-layer of the Data Link Layer of the IEEE

802.3 standard.

As stated in the standard’s text:

“This International Standard provides a description of the peer-to-peer protocol

procedures that are defined for the transfer of information and control between

any pair of data link layer service access points on a LAN.”

The standard describes “service” as a means of accessing capabilities provided

by upper communication layers. Using a “Service Access Point” (SAP) is how

one reaches a particular service. A SAP can be understood as a logical

construct managed by a software component belonging to an upper network

layer.

The Logical Link Control (LLC) is defined as the upper sub-layer of the Data

Link Layer, where Media Access Control (MAC) is the lower sub-layer. LLC

describes the connection services available to SAPs.

17

The data structure used in LLC is called “Protocol Data Unit” (PDU). The PDU

has following fields, as illustrated in Figures 2.5 and 2.6:

Address Fields:

Destination Service Access Point (DSAP) – Contains the destination SAP of

the PDU.

Source Service Access Point (SSAP) – Contains the source SAP of the PDU.

Control Field - Designate command and response functions, may contain

sequence numbers when required.

Information Field – Contains zero or more bytes of information.

Figure 2.5 – IEEE 802.2 LLC Fields.

Source: IEEE (1998).

18

Figure 2.6 – IEEE 802.2 Address Fields.

Source: IEEE (1998).

Each SAP address field has seven bits of actual address and one least

significant bit used in the DSAP address field to identify the DSAP address as

either an individual (bit set to 0) or a group address (bit set to 1) and in the

SSAP address field to identify that the LLC PDU is a command (bit set to 0) or a

response (bit set to 1). The second least significant bit set to 1 indicates a

reserved address.

All 1’s in the DSAP address field is said to be the “Global” DSAP address and

all 0’s in the DSAP or SSAP address field is said to be the “Null” address.

In this work, both DSAP and SSAP addresses will use the least significant bit

set to 0 (thus following a 0xxxxxxx format), giving 126 non-null different SAP

addresses (all even decimal numbers).

The standard defines three different types of services:

Type 1 Operation: PDUs shall be exchanged between two LLC layers without

the need for the establishment of a data link connection.

19

Type 2 Operation: A data link connection shall be established between two

LLC layers prior to any exchange of information-bearing PDUs.

Type 3 Operation: PDUs shall be exchanged between two LLC layers without

the need for the establishment of a data link connection, but the receiving

side has to acknowledge the reception of any data back to the sending side.

There are three different Control Field formats, as illustrated in Figure 2.7:

Information transfer format: The I-format PDU shall be used to perform

numbered information transfer in Type 2 operation.

Supervisory format: The S-format PDU shall be used to perform data link

supervisory control functions in Type 2 operation.

Unnumbered format: The U-format PDUs shall be used in Type 1, Type 2, or

Type 3 operation to provide additional data link control functions and to

provide unsequenced information transfer.

Figure 2.7 – IEEE 802.2 PDU Control Field.

Source: IEEE (1998).

To this work, only Type 1 Operation and Unnumbered Command/Response (U-

format PDUs) will be relevant.

20

There are three types of U-format Commands and Responses PDUs in Type 1

Operation, as illustrated in Figure 2.8:

Unnumbered information (UI) Command

The UI command PDU shall be used to send information to one or more

LLCs. There is no LLC response PDU to the UI command PDU.

Exchange identification (XID) Command/Response

The XID command PDU shall be used to convey the types of LLC services

supported (for all LLC services. The XID response PDU shall be used to

reply to an XID command PDU at the earliest opportunity

Test (TEST) Command/Response

The TEST command PDU shall be used to cause the destination LLC to

respond with the TEST response PDU at the earliest opportunity, thus

performing a basic test of the LLC to LLC transmission path.

Figure 2.8 – Type 1 operation command control field bit assignments.

Figure 2.9 – Type 1 operation response control field bit assignments.

Source: IEEE (1998).

21

To this work, only UI and TEST PDUs will be relevant.

The only difference between Type 1 Operation Command and Response PDUs

is on the fifth least-significant bit of the Control Field named “Poll/Final” (P/F) bit.

On a XID or TEST Command and Response PDUs, the P/F bit shall be set to 1

and on a UI Command it shall be set to 0.

In the IEEE 802.2 standard there is an extension called “Subnetwork Access

Protocol” (SNAP) which was created to provide to upper layer protocols the

same Ethertype field used in Ethernet.

The SNAP header consists of the 3-byte Organizationally Unique Identifier

(OUI) followed by a 2-byte Protocol ID. If the OUI is value 0x000000

hexadecimal, the protocol ID is the Ethernet Type field value for the protocol

running on top of SNAP. If the OUI has a non-zero value, the 2-byte Protocol ID

field points to a vendor-specific protocol.

The SNAP header is to be found only in UI PDUs which have both DSAP and

SSAP fields filled with value 0xAA hexadecimal and Control Field set to value

0x03 hexadecimal (the first two least-significant bits set as required for U-format

PDU and P/F bit set to 0).

The historic reason for this apparently unnecessary complication, which in fact

reduces the number of usable data bytes in the IEEE 802.3 network packet,

was that in its design the LLC Service Access Point (SAP) is just 7 bits long,

allowing for at most 128 different combinations. As vendors started registering

more and more different communication protocols, it became clear to IEEE that

soon 8 bits would not be sufficient. As a result, the SAP value 0xAA

hexadecimal was reserved and the SNAP extension created.

2.1.5 Internet Protocol (IP)

In May 1974, the Institute of Electrical and Electronics Engineers (IEEE)

published a paper entitled "A Protocol for Packet Network Intercommunication"

The paper's authors, Vinton G. Cerf and Robert E. Kahn (CERF, 1974),

described an network protocol for sharing resources using packet switching

among network nodes. A central control component of this model was the

"Transmission Control Program" that incorporated both connection-oriented

links and datagram services between nodes. The monolithic Transmission

22

Control Program was later divided into a modular architecture consisting of the

“Transmission Control Protocol” (TCP) at the Transport Layer and the “Internet

Protocol” (IP) at the Network Layer. This layered model became known as the

United States’ Department of Defense (DoD) “Internet Model and Internet

protocol suite”, and informally as “TCP/IP”.

The Advanced Research Projects Agency Network (ARPANET) initially funded

by the Advanced Research Projects Agency (ARPA) of the DoD (DARPA, 1981)

was the first network to implement the TCP/IP protocol suite.

IP versions 0 to 3 were experimental versions developed between 1977 and

1979. The protocol version in use today is version 4 (IPv4) introduced in

September of 1978 and “4” is the protocol version number carried in every IP

packet connecting computers, mobile phones and other communication devices

all over the world.

The successor to IPv4 is IPv6. Its most prominent difference from version 4 is

the size of the addresses. While IPv4 uses 32 bits for addressing, yielding 4.3

billion (4.3×109) different addresses, IPv6 uses 128-bit addresses providing

3.4×1038 different addresses.

Another Transport Layer protocol operating over IP is worth mentioning: the

“User Datagram Protocol” (UDP) which was introduced in 1980 (COMER,

1995). Unlike TCP, which implements a reliable connection-oriented

communication between network nodes, UDP is suitable for purposes where

error checking and recovery are either not necessary or are performed at the

Application Layer. UDP avoids the overhead of such processing in the protocol

stack. Time-sensitive applications often use UDP because dropping packets is

preferable over waiting for packet retransmission, which may not be an option in

systems operating under real-time constraints.

2.2 Embedded networks

Networks designed to be installed in a completely segregated environment such

as in aerospace vehicles present particularities that differentiate them from

those originally developed for commercial networks.

23

Embedded networks serve the purpose of connecting functions hosted by

electronics modules that interact to serve a greater purpose, for instance,

providing global communication or Earth climate survey.

These systems need to have their behavior predicted during their design;

therefore networks need to present a level of deterministic behavior while

connecting functional elements of such systems.

These elements can be data producers, data consumers or both, and the

relations between them are in general defined quite early in the system design

phase.

Further, certain functions which give an embedded network the desired

deterministic behavior are created and deployed at network elements as

needed.

The next three sections explore aspects of embedded networks and their

relevance to the design of the system and to the network protocol serving it.

2.2.1 Data producers and data consumers

In a complex and high integrated distributed processing system, in particular

those present in aerospace vehicles, it is essential for a proper design to

identify how engineering data flows from one part of the system to other parts of

the system.

For instance, positioning data produced by a sensor installed in a satellite which

tracks the Sun needs to flow to the energy supply subsystem which is

responsible for moving the solar panels for optimal electric power generation. In

a “fly-by-wire” flight control system present in modern aircraft, data must flow

from pressure sensors calibrated for indicating altitude and airspeed, from

accelerometers calibrated for indicating body acceleration, from the engines

and from the pilot command inceptors to a central computer which is

responsible for properly moving flight control surfaces ensuring a smooth flight

path.

The communication paths connecting parts of a distributed system are the

result of an analysis identifying Data Producers and Data Consumers.

The important questions that need to be answered are:

24

• Which information is required for the system to operate as designed?

• Which parts of the system produce what information?

• Which parts of the system consume what information?

Once Data Producers and Data Consumers are connected, a basic system

topology emerges. It may indicate that point-to-point, star or a mix of the two

topologies may seem more appropriate. However, other aspects of the

communication infrastructure need to be addressed, such as physical distance

between transmitters and receivers and any timing requirements that may affect

how well Data Consumers process received data. These two aspects and

perhaps others may alter the initial perception of the most suitable network

topology for a given system and may limit the choice of the physical

transmission medium.

The format in which data is produced and consumed is also very relevant.

Sensors most commonly convert a physical quantity, such as air pressure, into

a voltage level which can be calibrated to express a measure of altitude in

meters or feet. Modern sensors can provide digital data, but it is not uncommon

that their output also need some form of calibration. Further, if a system using a

sensor for producing pressure altitude in meters needs to send this data to a

system which consumes pressure altitude in feet (such as the Multi-function

Display in the airplane cockpit), it must be converted before it is consumed. If

mathematical operations are required for data formatting, care must be taken

not to deteriorate the resolution required for the proper use of the data.

2.2.2 Essential services in embedded networks

Letting devices communicate over a network in a complex and highly integrated

processing environment onboard aerospace vehicles is quite an engineering

challenge.

Unlike a network in a household where any configuration is almost never

required, every aspect of the data exchange between any two participants in

such embedded network has to be identified and documented. For this task, it is

usual to produce “Interface Control Documents” (ICD) describing messages

being transmitted by one software application in one network node and being

received by an application (or applications) in one or more network nodes.

25

In general, networks connecting devices in aerospace vehicles have neither

spurious messages nor unplanned communication paths: everything is pre-

planned and rigorously tested before entering operation.

Certain pieces of software, such as Attitude Control in satellites or Flight

Controls in aircraft are very sensitive to unplanned data transport delays while

crossing a communication channel. In such cases, system designers strive to

ensure communication determinism, that is, the behavior of the network when in

operation can be predicted while the whole system is still in its design phase.

Networking in closed environments such as in aerospace vehicles involves

aspects other than simply transmitting and receiving binary data. For instance, a

system designer may want to restrict the amount of data one communication is

supposed to carry per unit of time, or may want to make sure that one particular

message goes to one node and not to any other node. These and other design

concerns have driven the implementation of certain services present in complex

networking scenarios, in particular those found in modern aerospace vehicles.

These services serving different network layers are listed in Table 2.1:

Table 2.1 – Services at different ISO/OSI protocol layers.

ISO/OSI Layer Services

Physical Layer
Data Encoding

Data Decoding

Data Link Layer

Media Access Control

Data Validation

Routing

Traffic Shaping

Traffic Policing

Network Layer

Data Validation

Fragmentation

Defragmentation

Routing

Transport Layer
Data Validation

Error Recovery

26

Data Encoding and Data Decoding at the Physical Layer can represent more or

less binary data transmitted per a complete sine wave, while different Media

Access Control strategies at the Data Link Layer may represent more or less

transport delay in case of a failure accessing the physical medium.

Different checksum algorithms may represent higher or lower statistical

probability of accepting corrupted data as valid at the Data Link Layer, and

different message routing implementation may introduce more or less transport

delay when data has to be retransmitted to another network node. One must

note that Data Validation is not the sole privilege of the Data Link Layer.

At the Data Link Layer it is also possible to protect a communication path from a

misbehaving node by implementing Traffic Shaping and Traffic Policing, that is,

“shaping” or constraining outgoing traffic and “policing” or forbidding incoming

traffic according to some mathematical rule.

Fragmentation and Defragmentation (or reassembly) are usual at the Network

Layer, because Transport Layer protocols tend to be agnostic of the limitations

imposed by the physical medium with respect to the quantity of data transmitted

in a single operation.

Some form of Error Recovery is more common at the Transport Layer, whereby

any inconsistency found processing the received data is communicated back to

the transmitting node. At the Transport Layer is also where the upper layer

protocols using the Internet Protocol (IP) are identified, for instance,

Transmission Control Protocol (TCP) and User Datagram Protocol (UDP).

However, features similar to those provided by IP, TCP and UDP are available

in IEEE 802.2 specification at the Logical Link Control (LLC) part of this

standard’s Data Link Layer.

Depending on a design decision, these services can be allocated at different

hardware and software elements involved in data communication across a

network. For instance, a commercial Ethernet network card could implement all

the above services of the Data Link Layer, but usually restricts itself to do Media

Access Control (it makes sure that physical network addresses are properly

managed) and Data Validation (it makes sure that the received data is checked

against the data checksum present in the last 32 bits of the received frame).

27

One node in a more complex network such as those following a multi-star

topology using network switches should implement Traffic Shaping by design

for restricting the bandwidth on a transmitting node. By the same token, a

network switch in such topology scenario should implement Traffic Policing for

protecting the network from a node that does not perform the required Traffic

Shaping properly.

2.2.3 Essential characteristics of embedded network protocols

Historically, network protocols were developed as a response to a real life need.

The original Ethernet was conceived inside XEROX Palo Alto Research Center

(PARC) laboratory because there was a need for connecting workstations to a

very expensive high-speed laser printer. The development of the Transmission

Control Protocol (TCP) and the Internet Protocol (IP) was sponsored by the

United States’ Department of Defense (DoD) within the scope of a project

conducted by the Defense Advanced Research Projects Agency (DARPA) for

connecting geographically separated networks.

Design of networks expected to be installed in aerospace vehicles may benefit

from the fact that nodes are just meters apart in an aircraft and confined in a

less than one cubic meter space in a satellite, if we consider only installation

issues. However, characteristics such as reliability and flexibility must be offered

by embedded networks similarly to any other higher scale network.

Following the most important industry standards that support the development

of this work, ARINC-429, ARINC-664 Part 7 and SpaceWire, all described in the

next sections, the following high-level characteristics derived from system

design concerns should be present in any embedded network protocol:

STATICALLY CONFIGURED

The configuration of the protocol layers shall be statically defined and shall

not change while the network is in operation.

FLEXIBILITY

The services expected to be performed at the protocol layers shall be

allocated on network elements where they can best preserve data integrity

28

without penalizing the end-to-end transport delay experienced while crossing

the network from a source to a destination.

RELIABILITY

In the absence of any physical or electromagnetic interference, the protocol

layers shall preserve data integrity as data flows from one source to one or

more destinations.

MULTICASTING

The protocol layers shall permit one-to-one as well as one-to-many

communication paths.

FORWARDING

The protocol layers shall permit a node to forward data to a destination other

than the node itself.

ERROR DETECTION

Each protocol layer shall provide a means of detecting errors when validating

data received from the protocol layer immediately below.

FLOW CONTROL

There shall be a form of limiting the data flow going out of or coming in to any

network element at a protocol layer level according to fixed design

parameters.

Other concerns related to the Physical Layer such as coding efficiency (number

of significant binary digits transmitted per unit of time) and transmission rate

(raw binary digits transmitted per unit of time) are not listed because they

exceed the scope of this work, but they are not less important in the

implementation of any network.

These characteristics are appropriate to the protocol levels at the Data Link and

Physical Layers. However, to an application belonging to the highest level of the

7-layer ISO/OSI model, it is essential to have a standard interface for accessing

the desired protocol. The Ethernet MAC Layer allows for encapsulating multiple

protocols, but only the IP protocol provides similar means over a standard

software interface called “sockets”.

29

This approach was used by the creators of the IP protocol, is relevant to this

work and will be introduced in the next chapter. There, a new protocol and a

programming interface will be proposed, which combined provide a network

communication service to high-level applications not similar in the protocols

reviewed.

2.3 Digital Communication Protocols

This section describes characteristics of the three Digital Communication

Protocols (DCP) which became an inspiration for this work, namely ARINC-429,

ARINC-664 Part 7 (AFDXTM) and SpaceWire. In addition, because of its wide

spread use in military aircraft and in spacecraft applications, the characteristics

of the military standard MIL-STD-1553B are described in separate, followed by

other DCPs which find application the aerospace industry grouped by three

categories: serial communication, shared medium and time-triggered.

2.3.1 ARINC-429

“ARINC” stands for Aeronautical Radio Incorporated and “429” is the associated

number to the specification document named “Mark 33 – Digital Information

Transfer System (DITS)”. The ARINC-429 specification (ARINC, 2001) was

officially published in 1978 and usually referred to as a “unidirectional”, “multi-

drop” serial bus.

ARINC-429 allows point-to-point communication with the addition of an

important feature: it allows for multiple receivers (up to 20) for one transmitter

(hence the “multi-drop” attribute).

ARINC-429 physical medium is a 78Ω twisted-pair shielded copper cable. Data

transmissions use Bipolar-Return-to-Zero (BP-RZ) encoding (transition from

high-to-low or low-to-high voltage levels at half bit-time). To protect data

transmissions from interference, ARINC-429 uses two wires mirror-imaging

voltage levels on them between -10V and +10V. Allowed transmission speeds

are 12.5kbps or 100kbps with 4 bit-times bus idle (at 0 Volts) between two

consecutive data words.

30

Since ARINC-429 allows for only one transmitter on the physical medium, it

does not require any access control to it. If Node A needs to communicate with

Node B it uses one cable; if Node B needs to communicate back with Node A, it

must use a second cable (hence the “unidirectional” attribute). Normally,

devices communicating over ARINC-429 have separate circuitries for

transmitting and receiving.

ARINC-429 words are 32 bits long with up to 19 bits of data, 1 bit of odd-parity

and 12 bits overhead, including an 8-bit frame identifier (the “Label”).

Mostly because of its simplicity and reliability, communication links following the

ARINC-429 specification are in current use, unmodified since its formal

publication.

2.3.2 ARINC-664 Part 7 (AFDXTM)

The 7th part of the ARINC-664 specification was developed around a concept

created inside Airbus called “AFDXTM” for the A380 project (FUCHS, 2012).

AFDX is now a brand name which restricts its use in commercial products.

The ARINC-664 Part 7 specification received the title “AVIONICS FULL-

DUPLEX SWITCHED ETHERNET” (ARINC, 2009). It describes what was

called “Determinist Networks” within the more general concept of Aircraft Data

Networks (ADN) introduced by the ARINC-664 specification, which now has 8

parts:

Part 1 - Systems Concepts and Overview

Part 2 - Ethernet Physical and Data-Link Layer Specifications

Part 3 - Internet-based Protocols and Services

Part 4 - Internet-based Address Structure and Assigned Numbers

Part 5 - Network Domain Characteristics and Functional Elements

Part 6 - Reserved;

Part 7 - Deterministic Networks

31

Part 8 - Upper Layer Protocol Services

According to the text, the Part 7 describes a special case of what the ARINC-

664 specification calls “profiled networks”, which in turn is a special case of

“compliant networks” (refer to ARINC-664 Part 1). The networks which are

compliant with ARINC-664 are IEEE 802.3 and IP. The term “profiled” refers to

some restrictions imposed to both IEEE 802.3 and IP networks, for instance,

network addresses shall be fixed in each specific installation.

The term “SWITCHED” in the title of the ARINC-664 Part 7 (A664-P7)

specification suggests that this type of network requires a switching hardware;

therefore it follows a star topology which can be combined into a multi-star

topology. Nodes in an A664-P7 network are called “End-Systems” (E/S).

Also according to the text, the most important feature of A664-P7 networks is

“Quality-of-Service” (QoS), in particular timely delivery of data. To achieve this

goal, several special elements were introduced, modifying how data packets are

assembled and delivered throughout the network.

The first important element introduced is called “Virtual Link” (VL). The VL is a

unidirectional logical communication link with guaranteed bandwidth. Being

unidirectional has its consequences in an A664-P7 network: if E/S X needs to

communicate to E/S Y it needs one VL and if E/S Y needs to communicate back

to E/S X it needs a second VL.

It is interesting to note that this unidirectional characteristic of the VL is

implemented in a full-duplex IEEE 802.3 physical medium. This means that an

End-System can simultaneous transmit and receive data using a single cable

but using two VLs. If one compares this situation with the one described in the

previous section, he or she will immediately find similarities – at least from a

logical perspective – with two nodes communication via ARINC-429. No

surprises here, because of one of the key issues driving Airbus toward AFDX

was precisely the virtualization of an ARINC-429 point-to-point network on an

IEEE 802.3 infrastructure with additional benefits, such as electrical cabling

simplification and a 100-fold increase in transmission speed.

32

The A664-P7 specification itself recognizes this by saying: “In a system with

many end points, point-to-point wiring is a major overhead. Ethernet networks

can offer significant advantages and a suitable model for a deterministic

network can be obtained through emulating the point-to-point connectivity.”

The multi-drop attribute of ARINC-429 data bus is usually realized by splitting

cables or working on cable connectors. The same multi-drop attribute applies to

A664-P7 networks, however through another important element: the A664-P7

Switch. The technical specifications of this type of equipment were derived from

those found in Ethernet Switches, but with special attention to the restrictions

imposed by the ARINC-664 specification.

Another consequence of the multi-drop attribute of A644-P7 networks is that

VLs must support multicast transmissions. This is realized by using special

classes of IEEE 802.3 and IP network addresses built around VLs.

The A664-P7 Switch can provide Traffic Policing as any commercially available

Ethernet Switch (CISCO, 2020), and policing is essential to the deterministic

nature of A664-P7 networks. However, a A664-P7 Switch is not allowed to

“auto-discover” routing paths for network data packets as any Ethernet Switch

does: routing paths must be statically configured for each VL and made

effective at A664-P7 Switch power-on.

While A664-P7 Switches are expected to do Traffic Policing on incoming

network traffic, another element is required to secure bandwidth to VLs. An

End-System that transmits data on A664-P7 networks need to provide Traffic

Shaping on each VL, that is, no VL is allowed to transmit more than it is

expected to. Traffic Shaping on commercial networks is present only on

Ethernet Switches (CISCO, 2020).

On A664-P7 networks, two parameters are used for defining the allowed

bandwidth of a VL:

Lmax: the maximum packet size a VL can transmit expressed in bytes;

33

Bandwidth Allocation Gap (BAG): the minimum amount of time separating

two consecutive data packets transmitted on the VL expressed in

milliseconds.

The bandwidth for a VL is defined by the quantity (Lmax+20)/BAG.

While performing Traffic Shaping on each VL it uses, an A664-P7 End-System

needs to take into account an effect called “transmission jitter. VLs are streams

of data that share the same physical network port; therefore the transmission

carried out on one VL may suffer interference from transmissions from other

VLs, since data packets line up for reaching the physical medium.

This transmission jitter is the maximum amount of time one expects to affect the

BAG of a particular VL. If the maximum and the minimum amount of time

observed on a VL separating two consecutive data packet transmissions are

BAG plus X and BAG minus Y milliseconds respectively, the transmission jitter

is the quantity X plus Y for that particular VL.

The transmission jitter is an important quantity for the Traffic Policing function

performed by the A664-P7 Switch. If an A664-P7 End-System is responsible for

shaping network traffic on each VL, the A664-P7 Switch is responsible for

policing the incoming traffic in for each VL. Without transmission jitter, policing

is simple and it is sufficient to verify that the bandwidth associated to a VL is not

exceeded. With transmission jitter, a VL is allowed an overdraft to compensate

for oscillations in the data packet transmission period represented by the

parameter BAG.

Traffic Shaping and Traffic Policing working together should give A664-P7

networks its “deterministic” behavior, although it would be more appropriate to

describe this quality as “bounded data delivery”. After all, what analytic methods

permit in A664-P7 networks is the estimation of a bound for the arrival pattern of

network data packets.

A third important element in A664-P7 networks is the introduction of the concept

of “ports” through the use of the User Datagram Protocol (UDP) over IP. A port

is a virtual construct that allows data exchange between applications running in

34

different network nodes and is present both in UDP and TCP protocols.

However, the usage of a port in A664-P7 forces the operating system

environment in an End-System to be compliant with the ARINC-653

specification (ARINC, 2015), which introduces the concepts of “sampling port”

and ”queuing port” originally intended for process-to-process communication

within the same operating system environment (ALENA, 2007). Binding ARINC-

653 queuing and sampling ports to A664-P7 UDP ports is realized through

proprietary solutions which do not share a common software interface.

Since A664-P7 use IEEE 802.3 and IP, fragmentation of data packets is

supported. On IP, fragmentation is governed by the quantity Maximum Transfer

Unit (MTU) expressed in bytes: any data packet with size bigger than MTU is

split in two or more fragments reassembled at the receiving end. With IP over

IEEE 802.3, the value of MTU is 1500 bytes, on A664-P& networks; MTU is

equal to the parameter Lmax for each VL. That is, on an A664-P7 network, a

data packet with size bigger than Lmax for a particular VL is split in two or more

fragments. According to the ARINC-664 Part 7 specification, the maximum

packet size allowed is 8192 bytes.

Data encoding on A664-P7 networks follows the IEEE 802.3 paradigm at 100

megabits per second (Manchester encoding also called Phase Encoding or PE).

Data packets follow the UDP/IP over IEEE 802.3 paradigm with special rules for

assembling IEEE 802.3 and IP destination and source addresses. And one

important, 1-byte sized exception: A664-P7 data packets are numbered from 0

to 255 using a field located at the very end of each data packet called

“Sequence Number” (SN). Because of this SN field, the maximum payload size

of an A664-P7 data packet is one byte less than that of a normal UDP/IP over

IEEE 802.3 data packet.

The SN field is the resource chosen for implementing two special layers into the

otherwise IEEE 802.3/Ethernet standard compliant A664-P7network. These are

called “Redundancy Management” (RM) and “Integrity Checking” (IC). Data

packet transmissions on A664-P7 networks occur using two redundant physical

links which transport two identical copies of each data packet. The IC layer

35

checks whether data packets have consecutive SN and the RM layer discards

the second copy once it receives and validates the first copy.

The ARINC-664 Part 7 specification became the “de facto” standard for large

avionics networks since its formal publication in 2005.

2.3.3 SpaceWire

Since the SpaceWire standard was publishedby the European Cooperation for

Space Standardization in January 2003 (under the reference number ECSS-E-

50-12A), it has been adopted by ESA, NASA, JAXA and ROSCOSMOS (the

State Space Corporation of the Russian Federation). It is being used today on

many high-profile scientific, Earth observation and commercial missions,

including Gaia, ExoMars, BepiColombo, the James Webb Space Telescope,

GOES-R, Lunar Reconnaissance Orbiter and ASTRO-H (PARKES et al., 2005).

In its own words, “SpaceWire links are full‐duplex, point‐to‐point, serial data

communication links” (ECSS, 2008). However, it actually supports multi-star

topologies with the introduction of “routing switches” and an associated routing

protocol.

The SpaceWire standard is divided into “clauses”, six of them dedicated to

protocol levels:

Clause 5 (Physical Level) covers cables, connectors, cable assemblies and

printed circuit board tracks.

Clause 6 (Signal Level) deals principally with electrical characteristics, and

coding and signal timing.

Clause 7 (Character Level) describes how data and control characters are

encoded.

Clause 8 (Exchange Level) presents the way in which a SpaceWire link

operates including link initialization, normal operation, error detection and

error recovery.

36

Clause 9 (Packet Level) describes the way in which data is encapsulated in

packets for transfer across a SpaceWire network.

Clause 10 (Network Level) deals with the structure and operation of a

SpaceWire network.

There is no official pairing of SpaceWire clauses to the ISO/OSI 7-layer network

reference model.

SpaceWire was designed for moving large amounts of data reliably between

two electronic units installed in a spacecraft. It provides mechanisms for

securing link stability and link recovery following detection of an error condition

and also a mechanism for finding alternate data traffic routes to overcome

occasional link congestion. It also provides flow control on both transmitting and

receiving sides of each node.

The packet structure is very simple: it defines a header which contains the

routing information, a payload and an end-of-packet marker.

Data inside the packet is encapsulated as “Characters”. They can be either 10-

bit “Data Characters” or 4-bit “Control Characters”. One particularly important

Control Character is the “Flow Control Token” (FCT), used in regulating traffic

between two nodes.

If one node is prepared for receiving data from other node, that is, it has enough

memory space on its receiver electronics for admitting data characters, it must

transmit a packet containing an FCT. Receiving an FCT authorizes the

transmitting node to send 8 characters and sending an FCT sets the receiving

node to expect 8 characters. The transmitting node keeps a credit count of how

many characters it is allowed to send and the receiving node likewise keeps a

credit count of how many characters it has allowed to receive. Each time the

transmitting node sends a data character, it decrements the transmit credit

count by one. Each time the receiving node receives a data character, it

decrements the receive credit count by one. The standard specifies that the

maximum number of outstanding data characters on either the transmitting or

receiving side is 56.

37

Routing in SpaceWire deserves special attention due to its clever

implementation. To support multi-star topologies by cascading routing switches,

enough routing information is inserted in the beginning of the data packet as a

sequence of 8-bit fields informing the switch output port whereto the data packet

should be forwarded. As the data packet crosses a routing switch, the first

leading character is removed and only remaining characters are forwarded to

the output port.

Another important feature in SpaceWire is what the standard calls “wormhole

routing”, described in the standard’s text as follows (ECSS, 2008):

“As soon as the header for a packet is received the switch determines the

output port to route the packet to by checking the destination address. If the

requested output port is free then the packet is routed immediately to that

output port. That output port is now marked as busy until the last character of

the packet has passed through the switch”

This mechanism is not new and a similar approach called “cut-through” was

used in the first commercially available Ethernet switches (CISCO, 2004).

Broadcast and multicast are also supported by the standard, but these forms of

packet distribution are treated as particular cases in the routing switch

programming, unlike IEEE 802.3 Ethernet which use special network addresses

for the same purpose.

SpaceWire physical medium operates with Low Voltage Differential Signaling

(LVDS) using a low voltage swing (from -400mV to +400mV over 1.2V level).

Data encoding is Data-Strobe (DS) with one line for Data and one line for

Strobe. The data is transmitted Non-Return-to-Zero (high voltage level is

interpreted as 1 and low voltage level is interpreted as 0) and the strobe signal

changes state whenever the data remains constant from one data bit time to the

next.

SpaceWire cables comprise four twisted pair wires with a separate shield

around each twisted pair and an overall shield. The standard provides detailed

38

information not only about the cable construction, but also about connector

types and other wiring requirements.

Supported data transmission speeds range from 2 megabits per second to 400

megabits per second, what places SpaceWire on the top of the list of DCPs for

this particular attribute.

2.3.4 MIL-STD-1553B

MIL-STD-1553 (MIL STANDARD, 2019) was first published as a U.S. Air Force

standard in 1973, and first was used on the F-16 Falcon fighter aircraft. It was

originally designed as an avionic data bus for use with military avionics, but has

also become commonly used in spacecraft on-board data handling (OBDH)

subsystems.

With the introduction of this standard, the point-to-point topology commonly

used in previous on-board electronic systems was replaced by a bus topology,

with immediate benefits in simplification of cabling design.

The hardware components in a MIL-STD-1553B bus assume three different

roles:

• Bus Controller (BC): a unit responsible for controlling all message

transmissions on the physical bus;

• Remote Terminal (RT): a unit connected to the physical bus responsible

for transmitting or receiving messages as dictated by the Bus Controller;

• Bus Monitor (BM): a passive unit that can be used to monitor the bus

data flow for monitoring purposes.

The physical layer is a 1 megabit per second, Manchester II encoded, dual-

redundant serial bus. All communications go over the primary bus unless it

becomes unavailable. In this event, a secondary bus is used. Figure 2.10

illustrates the bus topology and its components.

39

Figure 2.10 – Typical MIL-STD-1553B bus topology.

Source: Adapted from AIM GmbH (2010).

There can be up to 31 RT units connected to a single physical bus. In general,

the BC has another unit that can be used as a backup in case of the BC

becoming unavailable.

No RT can transmit on the bus unless instructed to by the BC. The system

integrator responsible for the design of the on-board system has to program the

BC for issuing commands to RT for receiving and transmitting messages with

pre-defined number of data words.

The BC can issue commands to the RTs for data transmissions: a) from RT to

BC; b) from BC to RT; and c) from RT to RT.

The commands sent by the BC to the RTs take 20 bit-times, 3 bits of a “Sync”

field, 16 data bits and 1 odd-parity bit

There are three different types of words: command; data; and status, as

illustrated in Figure 2.11.

40

Figure 2.11 – MIL-STD-1553B word formats

Source: Adapted from AIM GmbH (2010).

The sequence of words for an RT-to-RT communication usually goes as

follows:

• The BC sends a Command Word instruction to the receiving RT with the

T/R bit set to R and the Data Word Count set to the number of Data

Words to be received;

• The BC sends a Command Word instruction to the transmitting RT with

the T/R bit set to T and the Data Word Count set to the number of Data

Words to be transmitted;

• The transmitting RT sends a Status Word for notifying the BC of its

functional state, then it transmits the exact programmed number of Data

Words.

The design of complex avionics systems often requires multiple hierarchically

arranged physical buses connected via relay units, as illustrated in Figure 2.12.

41

Figure 2.12 – Typical MIL-STD-1553 bus topology in a military aircraft.

Source: Adapted from AIM GmbH (2010).

Note in Figure 2.11 that the “Stores Management System” (SMS) is RT to the

Global bus and BC to the Stores bus and the “Flight Control Computer” (FCC) is

BC for both Global bus and the “Cockpit Display System” (CDS) bus.

An example of the MIL-STD-1553B topology in a space vehicle is illustrated in

Figure 2.13.

42

Figure 2.13 – MIL-STD-1553B bus in the CBERS Satellite.

Source: Adapted from Wang et al. (2017).

Figure 2.13 shows the topology of the On-Board Data Handling (OBDH)

subsystem of the China-Brazil Earth Resources Satellite (CBERS), including a

Central Terminal Unit (CTU), Remote Terminal Units (RTU A to F), a Tele-

Command Unit (TCU), a Command Decode Unit (CDU), a Ultra-Stable

Oscillator (USO) and a Data Recording and Processing unit (DRP). Note that

the CTU plays the role of BC for the OBDH subsystem bus.

The MIL-STD-1553B bus is recognized by its reliability in communication

networks in submarines, tanks, target drones, missiles, launch vehicles and

larger space systems, including the International Space Station and Space

Shuttle programs, and more recently in the Spacebus family of geostationary

satellites (BOURGUIGNON, 2013).

43

2.3.5 Serial communication

2.3.5.1 RS-232

In telecommunications, the “Recommended Standard” 232 or RS-232 (EIA

STANDARD, 1969), refers to a standard originally introduced in 1960 for serial

communication transmission of data. It formally defines signals connecting a

DTE (Data Terminal Equipment)m such as a computer terminal, and a DCE

(Data Communication Equipment), such as a modem.

2.3.5.2 RS-422

RS-422 is a technical standard originated by the Electronic Industries Alliance

(TIA/EIA STANDARD, 1994) that specifies electrical characteristics of a

differential signaling that can transmit data at rates as high as 10 Mbit/s, or may

be sent on cables as long as 1,500 meters. Some systems directly interconnect

using RS-422 signals, or RS-422 converters may be used to extend the range

of RS-232 connections.

2.3.5.3 RS-485

RS-485 (EIA STANDARD, 1983) supports inexpensive local networks and

multi-drop communications links, using the same differential signaling over

twisted pair as RS-422. These characteristics made RS-485 attractive for

industrial control systems and for aerospace applications.

RS-485 found its way as Physical Layer into space applications such as the

OBDH-485 bus introduced by Thales-Alenia Space in the Spacebus family of

geostationary satellites, in particular for the Spacebus 4000 (PETIT, 2012).

Figure 2.14 shows three OBDH buses connecting the Satellite Management

Unit (SMU) of the Spacebus 4000 to other electronic units.

44

Figure 2.14 – OBDH-485 buses for the SMU of the Spacebus 4000 satellite.

Source: Adapted from Caramia (2016).

2.3.6 Shared medium

2.3.6.1 CAN

A Controller Area Network (CAN bus) is a robust vehicle bus standard designed

to allow microcontrollers and devices to communicate with each other in

applications without a host computer (BOSCH, 1991). It is a message-based

protocol, designed originally for multiplex electrical wiring within automobiles to

save on copper, but is also be used in many other contexts. Development of the

CAN bus started in 1983 at Robert Bosch GmbH. The protocol was officially

released in 1986 at the Society of Automotive Engineers (SAE) conference in

Detroit, Michigan. Bosch published several versions of the CAN specification

and the latest is CAN 2.0 published in 1991.

CAN also found its way into space applications replacing proprietary, RS-485

based multi-drop buses (CARAMIA, 2016), as illustrated in Figure 2.15

(compare with Figure 2.14).

45

Figure 2.15 – CAN-bus upgrade proposal for the Spacebus 4000 satellite.

Source: Adapted from Caramia (2016).

The CAN bus specification covers the MAC and the LLC sub-layers of the Data

Link Layer and is not specific about the Physical Layer. Curiously, the

suggested Physical Layer for the CAN bus for space applications is RS-485

(PETIT, 2012).

2.3.6.2 ARINC-629

The ARINC-629 computer bus was introduced in May 1995 and was first used

on the Boeing 777 (SAE-ITC STANDARD, 2019). The ARINC-629 bus operates

as a multiple-source, multiple-sink system, where each terminal can transmit

data to, and receive data from, every other terminal on the data bus. While

some people expected that the Boeing 777 would be the first and last aircraft to

use ARINC-629 data bus, it is also used on the Boeing 737 MAX and Airbus

A330 and A340.

2.3.7 Time-triggered

2.3.7.1 TTP

The Time-Triggered Protocol (TTP) is an open computer network protocol for

control systems (TTTECH, 2003). It was designed as a time-triggered field bus

for vehicles and industrial applications and standardized in 2011 as SAE

46

AS6003 (TTP Communication Protocol). TTP was originally designed at the

Vienna University of Technology in the early 1980s. In 1998 TTTech

Computertechnik AG took over the development of TTP, providing software and

hardware products.

The TTP physical medium is not specified in the SAE standard. The

commercially available hardware either relies on RS-485 at 4 megabit per

second or on Ethernet at 25 megabit per second.

TTP was selected by NASA’s Marshall Space Flight Center for implementing

the Integrated System Health Management (ISHM) within the scope of the

Propulsion High-Impact Avionics Technology (PHIAT) project (GWALTNEY et

al., 2006).

2.3.7.2 TTEthernet

The Time-Triggered Ethernet (SAE AS6802) standard defines a fault-tolerant

synchronization strategy for building and maintaining synchronized time in

Ethernet networks, and outlines mechanisms required for synchronous time-

triggered packet switching for critical integrated applications, such as integrated

modular avionics architectures (TTTECH, 2008).

As the name indicates, TTEthernet uses Ethernet technology. More specifically,

it implements a multi-star topology; therefore the use of a switch is mandatory to

this networking architecture.

TTEthernet technology implemented by TTTech was used in the Orion

Multipurpose Crew Vehicle (MPCV), a NASA spacecraft designed to take a

crew of up to six astronauts to destinations beyond Low Earth Orbit including

the Moon and Mars (NASA, 2020). The brains of the Orion spacecraft (NASA,

2019) is the Vehicle Management Computer (VMC), a single electronics unit

consisting of four independent modules that deliver the processing capability for

the Orion spacecraft and communicate with the other avionics via redundant

Ethernet connections using the TTEthernet Network Interface Controllers (NIC)

and network switches (GOFORTH et al., 2014).

47

TTEthernet was also proposed to future integrated modular spacecraft

architectures as part of the Avionics and Software (A&S) project chartered by

NASA's Advanced Exploration Systems (AES) program (LOVELESS, 2015).

2.3.7.3 FlexRay

FlexRay is an automotive network communications protocol developed by the

FlexRay Consortium to govern on-board automotive computing (FLEXRAY,

2005). It was designed to be faster and more reliable than CAN and TTP. The

FlexRay consortium disbanded in 2009, but the FlexRay standard is now a set

of ISO standards, ISO 17458-1 to 17458-5.

There is no public reference about the use of FlexRay in the aerospace

industry. However, FlexRay was considered a candidate by NASA in the same

study for selecting a digital communication protocol for the Integrated System

Health Management (ISHM), for which TTP was considered the best choice

(GWALTNEY et al., 2006).

2.4 Comparing digital communication protocols

Table 2.2 lists the following high-level features for the industry standards that

are most relevant to this work, namely: 1) the IEEE 802.3 Ethernet; 2) the IEEE

802.2 Logical Link Control (LLC); 3) the Internet Protocol (IP); 4) the ARINC-

429 serial communication protocol; 5) the ARINC-664 Part 7 specification for

the full-duplex switched Ethernet used with Integrated Modular Avionics (IMA);

and 6) SpaceWire.

These high-level features are:

• Origin: which industry field introduced the standard;

• Topology: which network topologies the standard supports;

• ISO/OSI Layers: which layers of the 7-layer ISO/OSI reference model is

covered by the standard;

• Transmission speed: for standards including the Physical Layer, which

transmit speeds are available;

48

• Message sizes: which message sizes in bytes the standard is capable of

transmitting.

Table 2.3 lists the same features for the digital communication protocols listed

in the previous sections that are found in space applications, namely: 1) the RS-

485 multi-drop serial communication protocol; 2) the Controller Area Network

(CAN); 3) the MIL-STD-1553B; and 4) the TTEthernet, only recently listed

among those suited for space applications. For these, Table 2.3 also lists their

most prominent use in space applications.

It is important to mention that the transition of one digital communication

protocol to the space industry requires further development particularly in

microprocessor hardware. As an example, the Space Ethernet PHYsical Layer

project (SEPHY, 2015) developed a radiation tolerant Ethernet transceiver as

part of the initiative for introducing the TTEthernet technology in space

applications.

It is also important to mention that the mechanisms used by a digital

communication protocol for transporting data are well defined in the applicable

standard, but the programming interface for accessing it from the Application

Layer rely on proprietary solutions that highly depend on the operating system

used for hosting the application.

For instance, the ARINC-664 Part 7 specification explicitly indicates that

applications should be hosted by an ARINC-653 specification compliant

operating system, but does not indicate what programming interface shall be

used. The consequence of this absence is that different ARINC-653

implementations offer a different, non-standard application programming

interface.

Filling this particular gap is one important objective of this work, as detailed in

the next chapters.

49

Table 2.2 – Industry standard digital communication protocols.

Feature Ethernet

IEEE-802.3

LLC

IEEE-802.2

Internet

Protocol

ARINC-429 ARINC-664

Part 7

SpaceWire

Origin Computer industry
Computer

industry

Telecommunication

industry

Aircraft

industry

Aircraft

industry

Space

industry

Topology star n/a n/a
multi-drop

bus
multi-star

point-to-point

multi-star

ISO/OSI layers
Physical

Data Link
Data Link Network

Physical

Data Link

Physical

Data Link

Network

Transport

Physical

Data Link

Network

Transmission

speed

10 or 100 Mbit/s

1 or 10 Gbit/s
not applicable not applicable 100 kbit/s 100 Mbit/s

2 Mbit/s up to

400 Mbit/s

Message sizes 46 to 1500 bytes
43 to 1487

bytes
MTU* 32 bits

18 bytes up to

8192 bytes
n x 8-bit

 *the Maximum Transfer Unit (MTU) is defined for each individual Physical Layer.

50

Table 2.3 – Digital communication protocols for space applications.

Feature RS-485 CAN MIL-STD-1553B TTEthernet

Origin
Telecommunication

industry
Automotive industry

Military aircraft

industry
Aircraft industry

Topology multi-drop bus shared bus shared bus multi-star

ISO/OSI layers Physical Data Link
Physical

Data Link

Physical

Data Link

Transmission

speed
up to 4Mbit/s 1 Mbit/s 1 Mbit/s 100 Mbit/s

Message sizes application defined 0 to 8 bytes
up to 32 data words

of 16-bits
46 to 1500 bytes

Typical space

application

OBDH connection to

sensors and payload

units

OBDH connection to

sensors and payload

units

spacecraft

communication

backbone

spacecraft

communication

backbone

51

3 PROBLEM STATEMENT AND APPROACH TO A SOLUTION

3.1 High-level approach used for developing the Internet Protocol

Vinton G. Cerf and Robert E. Kahn in their article to the IEEE Transactions on

Communications (CERF, 1974) called “A Protocol for Packet Network

Intercommunication” described functionalities of what was called “Transmission

Control Program” (TCP) allowing hosts connected to different networks to

communicate through a “gateway”.

In the article, this TCP “…handles the transmission and acceptance of

messages on behalf of the processes it serves”. The authors made clear their

vision on “Process Level Communication” in their Figure 2 reproduced below in

Figure 3.1:

Figure 3.1 – “Process Level Communication” according to Cerf and Kahn.

Source: Adapted from Cerf and Kahn (1974).

The authors also describe the data packet format and several protocol features,

such as message segmentation, packet sequencing and retransmission to

overcome potential incomplete information transfer and flow control (by using

the “window” concept). There is no indication of a preferred physical layer.

Later, in the conclusion section, the text reads: “The next important step is to

produce a detailed specification of the protocol so that some initial experiments

with it can be performed”.

In December of the same year, Vinton Cerf and two other colleagues (CERF et

al., 1974) submitted a “Request For Comments” (RFC) number 765 to the

International Packet Network Working Group (INWG) of ARPANET’s (DARPA,

1981) Network Information Center (NIC), This RFC “describes the functions to

Fig. 2. Three networks interconnected by two GATEWAYS.

NETWORK NETWORK NETWORK

GATEWAYGATEWAY

Process
X

Process
Y

packet from

process X

A B C
M N.

52

be performed by the internetwork Transmission Control Program [TCP] and its

interface to programs or users that require its services”.

In this RCF, the term “connection” is used to associate two “sockets” (a 3-tuple

used to uniquely identify a transmitting or receiving end), for which user calls

“specify the basic functions the TCP will perform to support interprocess

communication”. These user calls were: OPEN, SEND, RECEIVE, CLOSE,

INTERRUPT and STATUS.

Vinton Cerf and his colleagues at the ARPANET project created a

communication infrastructure that consisted not only in a lower (not lowest) level

protocol, but also in a collection of specific functions that would allow a process

executing in one host to communicate with a process executing in another host,

even if the two hosts were connected to dissimilar networks (hence the term

“internetworking”).

For a process incorporating its functionality through software, it is convenient

that the specifics of the physical connection to a communication link are hidden.

This facilitates keeping the focus in developing the process functionality itself

and assures portability, should the underlying software (most likely part of an

operating system) and hardware (most likely a network port) have to be

changed. This can be described as a protocol serving a data transfer service.

3.2 Problem statement

The specification ARINC-664 Part 7 (ARINC, 2009) uses the Ethernet Media

Access Control and Physical Layer, requires a star (or multi-star) topology and,

consequently, does not support a point-to-point topology.

SpaceWire supports both star (or multi-star) and point-to-point topologies but it

has its own (other than Ethernet) Physical Layer.

Supporting simpler and more complex network topologies allows scaling up

digital data communications in electronic systems onboard of small to medium

size aerospace vehicles, without necessarily changing the communication

protocol, and follows recent and current trends: “faster-better-cheaper”, “Lean

Production System” and the “New Space” approaches.

53

ARINC-664 Part 7 uses the Internet Protocol (IP) as the Network Layer and the

User Datagram Protocol (UDP) as the Transport Layer, therefore network data

frames have to be validated over two protocol layers before data is finally

moved to the Application Layer.

Eliminating layers between the Application Layer and the Data Link Layer

shortens the process of getting usefull data delivered to the application,

reducing and potentially speeding up the processing steps required to this

operation.

ARINC-664 Part 7 also does not include an Application Programming Interface

(API) for applications wishing to use this protocol. The ARINC-664 Part 7 relies

on commercial implementations of another specification ARINC-653 (ARINC,

2015) for connecting an application to an UDP port using proprietary

middleware.

SpaceWire (ECSS, 2008) also does not provide an API, only suggests what

services should be available.

Providing a standard API ensures software portability by decoupling the access

to a “channel” from operating system specifics, thus eliminating proprietary

solutions for sending and receiving application data.

These particular aspects of two very important industry standard protocols

present an opportunity for improvement as developed in this work.

3.3 Approach to solving the current problem

As Vinton Cerf’s and Robert Kahn’s contribution to the “Transmission Control

Protocol” over the “Internet Protocol” (the “TCP/IP”), which was only formalized

in 1980 (MCKENZIE, 2011), the contribution of this work is two-fold:

1) It provides a Data Link Layer Protocol that reduces the number of

software layers that data received from an Ethernet Media Access

Control (MAC) layer have to cross for reaching a top layer application by

dispensing the Network and the Transport layers (the protocol);

54

2) It provides an Application Programming Interface (API) that uses a new

concept called “channel” for simplifying the way an application uses the

Data Link Layer Protocol for communicating with its remote peers (the

service to the protocol).

In currently existing solutions, data producer and data consumer processes

execute at the topmost Application Layer relying on protocols at the Transport

Layer, such as the User Datagram Protocol (UDP) for the ARINC-664 Part 7

specification. Figure 3.2 illustrates how a direct path to the Data Link Layer

simplifies the access to data from the Application Layer by eliminating the need

of interfacing with the Transport and Network Layers.

Figure 3.2 – A direct path from Application Layer to Data Link Layer.

The “channel” API introduced in this work, allowing a data producer process to

communicate with a data consumer process in a reliable, controlled and flexible

way, is the very reason for the development of the new Data Link Layer

protocol. With the “channel” concept, applications abstract the access to the

lower level supporting protocol, as illustrated in Figure 3.3.

ETHERNET PHY

Data Producer/Consumer

ETHERNET PHY

Data Producer/Consumer

ETHERNET MAC

Internet Protocol

User Datagram Protocol ETHERNET MAC+LLC

Physical

Data Link

Network

Transport

Application

55

Figure 3.3 –The “channel” concept connecting Application Layers.

Without the “channel” concept and the associated supporting API, this new

protocol is simply another player in the digital communication protocol arena.

Although the new Data Link Layer protocol relies on Ethernet as the Physical

Layer, it does not impose any specific network topology. As in ARINC-664 Part

7, two of the services that the new “channel” concept provides to applications

are Traffic Shaping and Traffic Policing for controlling how much data per unit of

time an application is allowed to send or to receive over a “channel”. For them,

a low computational cost method for estimating the worst-case transmission

delay for a data frame crossing a traffic switching device, usually required in –

but not limited to – network star topologies, is also provided.

The virtualization of the data communication infrastructure arises naturally when

there is a high diversity in the nature of the devices operated by a system

onboard of an aerospace vehicle which need to be accessed by software

applications.

PROBLEM

SOLUTION

Node1

SAP 2

2

SAP 8

SAP 6

SAP 4

4

Channel 2

Channel 1

Node2

ETHERNET PHY

Data Producer/Consumer

Physical

Data Link

Application

ETHERNET PHY

Data Producer/Consumer

????

MAC + LLC MAC + LLC

56

Figure 3.4 shows the architecture proposed by the Consultative Committee for

Space Data Systems (CCSDS) called Spacecraft Onboard Interface Services

(SOIS). Between the highest level, the Application Layer, and the lowest level,

the Subnetwork Layer, different services are interposed for hiding Transport

Layer, Network Layer protocols and Physical Layer communication protocols,

such as MIL-STD-1553B, CAN and SpaceWire, from the application software

(SOIS, 2013).

Figure 3.4 –The SOIS communication architecture.

Source: Adapted from CCSDS (2013).

Figure 3.5 shows two SOIS deployment schemes for communication between

applications (top) and for communication between an application and a device

(bottom).

57

Figure 3.5 –SOIS deployment schemes.

Source: Adapted from CCSDS (2013).

However, SOIS does not provide an application programming interface similar

to the one provided in this work for supporting the “channel” concept.

The key objectives and the detailed specification of the new Data Link Layer

protocol, associated services and the “channel” concept are detailed in the next

chapter.

58

59

4 KEY OBJECTIVES FOR THE NEW PROTOCOL AND SERVICES

The next few sections present the key objectives orienting the specification of a

new Data Link Layer, IEEE-802.2 extended protocol and associated services.

4.1 Connect data producers to data consumers

Among the Physical (Layer 1) and Data Link Layers (Layer 2) implementations

developed in the last few decades, Ethernet and its IEEE standardization 802.3

is by far the most frequently used. In any household, wireless access points

route network traffic to commercial Internet service providers over Ethernet. In

the factory floor, several implementations allow automated manufacturing of

consumer electronics and cars. In commercial and military aircraft, Ethernet is

present since the ARINC-664 specification Parts 1 and 2 were published in

2002.

However, Ethernet implementations used in aerospace vehicles also imply in

using other Network and Transport Layers, being the most frequent the Internet

Protocol (IP) as the Network Layer and User Datagram Protocol (UDP) or

Transmission Control Protocol (TCP) as the Transport Layer.

The reason is that Ethernet, being a Data Link Layer protocol, does not provide

a means of linking two application instances running in different network nodes.

For that, a virtual construct needs to be defined and supported by associated

services. In UDP and TCP over IP, this virtual construct is named “port”.

Therefore, for connecting a Data Producer to a Data Consumer in an embedded

network, such those present in modern aerospace onboard electronics,

apparently requires a Transport Layer protocol and associated services to

transmit and receive data.

This means processing three network layers before being able to access data

needed by an application for its continuing operation, which in time-critical

situations, such as in controlling flight, may represent simply consuming extra

processing time with no actual work being done. Note that this is the case of

ARINC-664 Part 7, which relies on the combination of Ethernet, IP and UDP.

60

To better serve time-critical applications, shortening the processing time

required for extracting relevant data from a network transmission is very

important characteristic of a network protocol.

In fact, the network standard IEEE 802.2 Logical Link Control (LLC) provides

precisely this feature by specifying Service Access Points (SAP) at the Data

Link Layer.

The specification of a new Data Link Layer protocol and the “channel” concept

proposed in this work take advantage of this feature introduced by the IEEE

802.2 LLC protocol.

The approach developed in this work for simplifying the communication

between data producers and consumers using SAPs is illustrated in Figure 4.1.

Figure 4.1 –The “channel” concept connecting Service Access Points.

4.2 Support mixed topologies

Ethernet can be used in different network topologies, from its initial design as a

shared bus to its current and most frequent star shaped, mix of these two and

point-to-point, even when the latter seems limited to network maintenance

scenarios.

The protocol described by the ARINC-664 Part 7 specification was introduced in

the industry during the development program of a very large aircraft (the Airbus

A380) and in this scenario, a multi-star Ethernet topology was by far the most

appropriated, because of the drastic reduction of cabling expected when

compared to any other possible topology arrangement, even considering that

ETHERNET PHY

MAC + LLC

SERVICE ACCESS POINTS

Physical

Data Link

Application

ETHERNET PHY

MAC + LLC

SERVICE ACCESS POINTS

“Channel”

61

the actual network had to be duplicated for the sake of reliability (ARINC-664

Part 7 requires dual-redundant Ethernet physical medium).

For smaller vehicles, such as satellites, a multi-star topology may represent in

fact extra weight, space and power, because it requires the introduction of one

or more network switches.

A point-to-point Ethernet topology designed similarly to a wire-mesh can be

simpler to implement in such scenario, even considering that any network node

should be reachable over at least two independent paths.

Ideally, a network protocol should allow mixing topologies depending on the

target vehicle and the type of applications requiring data exchange. SpaceWire

is a good example of this approach.

The specification of a new Data Link Layer protocol proposed in this work

provides support for both star and point-to-point topologies and any combination

of the two.

4.3 Provide timing information

Time-sensitive systems often require a deterministic behavior of the software

applications involved.

Most of the time, software applications executing in a real-time operating

systems are strictly periodic, If such applications are data producers or data

consumers, it might be beneficial to applications which are data consumers to

evaluate the periodic behavior of associated data producers.

Therefore, time-stamping data packets transmitted over a network may provide

this means to any data consumer.

SpaceWire provides a means of propagating time, but neither it does it for time-

stamping messages, nor it relies on it to ensure global time coherency across

the whole network.

The specification of a new Data Link Layer protocol proposed in this work

introduces a time-stamp field, which is to be filled at the time of the network

data frame transmission.

62

4.4 Provide payload and header data integrity

Ethernet frames include a 32-bit Frame Check Sequence (FCS) field, a CRC-32

calculated over the entire Ethernet frame and transmitted after the last byte of

the payload, while IP and UDP protocols provide 16-bit checksums for their

respective headers. ARINC-664 Part 7 does not enforce any other form for

protecting its payload from occasional bit-flips. SpaceWire transmissions are

character-based and rely on a single parity bit for checking data integrity.

Phillip Koopman in 2002 presented a study on the performance of different

CRC-32 polynomials introducing a new one (KOOPMAN, 2002), and in 2004

presented a performance evaluation on a series of CRC polynomials ranging

from 3-bit to 16-bit (KOOPMAN, 2004).

The new Data Link Layer protocol proposed in this work introduces a new CRC

field to protect the header information and an extra CRC field to protect the

payload data, both taken from Koopman’s studies.

4.5 Provide routing validation

In closed operational environments, such as those present in aerospace

vehicles, it is vital for a reliable network operation that the communication paths

defined by the person in charge of the design of the network topology are

validated during the start-up phase of the embedded system which the network

serves.

The new Data Link Layer protocol introduces a service for validating routing

paths across the network independent of its topology, be it star or point-to-point

or a combination of the two.

The routing validation is performed using a new field that extends the original

IEEE 802.2 header in TEST PDUs.

4.6 Provide an operating system interface

The ARINC-664 Part 7 specification takes advantage of entities defined in the

ARINC-653 “Avionics Application Software Interface” specification (ARINC,

2015). It inherits the concept of “ports” defined in ARINC-653 Part 1 for

providing a path from UDP Source and Destination Port header fields to a

logical construct accessible by applications hosted by an ARINC-653 compliant

63

operating system. It also uses a 5-bit field in the ARINC-664 Part 7 IP Source

Address to communicate the numeric identification of the virtual-machine,

named “partition” in the ARINC-653 specification, which hosts the application

accessing the port.

Therefore, it is implicit that an ARINC-664 Part 7 requires an operating system

which is ARINC-653 compliant to host its End-System. However, neither ARINC

specification handles how data is passed from one partition executing in one

equipment unit to a partition executing in another equipment unit. In essence,

ARINC-653 ports are means of exchanging data between partitions like similar

process-to-process (or task-to-task) data exchange features available in

commercial operating systems. The consequence of this omission is that

commercial implementations of the ARINC-653 specification have their own and

proprietary way of performing data input and output over a hardware

communication interface, damaging the first expected benefit of this

specification: portability.

SpaceWire does not provide an application programming interface, only

suggests that, should one exist, it shall support at least following services:

✓ Open link: Starts a link interface and attempts to establish a connection

with the link interface at the other end of the link.

✓ Close link: Stops a link and breaks the connection.

✓ Write packet: Sends a packet out of the link interface.

✓ Read packet: Reads a packet from the link interface.

✓ Status and configuration: Reads the current status of the link interface

and sets the link configuration.

These service definitions model the programming interface for the new Data

Link Layer, IEEE-802.2 extended protocol, which introduces the “channel”

concept, a virtual connection between a Source Service Access Point (SSAP)

and a Destination Service Access Point (DSAP).

Following services will be defined:

✓ Register an operating system process, task or thread to a SAP

64

✓ Open a channel

✓ Send data to a channel

✓ Receive data from a channel

✓ Return status of a channel

✓ Close a channel

✓ Unregister an operating system process, task or thread from a SAP

For each configured channel, Traffic Shaping is provided for data sending

operations, as Traffic Policing is provided for data receiving operations. These

flow control features are put in place for protecting the integrity of the network in

the event of an abnormal behavior of a hosted application.

4.7 Protocol specification breakdown

The development of the new Data Link Layer (Layer 2), IEEE 802.2 extended

protocol specification involves:

• Specification of the new Protocol Data Units (UI and TEST PDUs) and all

its fields:

✓ IEEE 802.3 MAC Destination/Source Addresses

✓ IEEE 802.3 Length Field

✓ IEEE 802.2 DSAP and SSAP Fields

✓ IEEE 802.2 Control Field

✓ Header extension for Sequence Number on UI PDUs

✓ Header extension for Hop Count on TEST PDUs

✓ Header extension for Time-Stamping and Header-CRC on UI PDUs

✓ New payload CRC

• Specification of the associated services for UI PDUs:

✓ Data validation (via CRC on receiving end)

✓ Introduction of the concept of “channel”

✓ Traffic shaping (via token-bucket on transmitting end)

65

✓ Traffic policing (via token-bucket on receiving end)

• Route validation using TEST PDUs

• Specification of the operating system interface to the protocol layers:

✓ Network configuration files

✓ In-memory data structures

✓ Application Programming Interface paradigm

• Specification of a method for estimating UI PDU forwarding latency.

This work also provides a sample implementation of the protocol layers,

associated services and the “channel” concept using commercial off-the-

shelf software tools.

4.8 Side-by-side comparison

The Table 4.1 shows a side-by-side comparison of features presented in

ARINC-664 Part 7, SpaceWire and the proposed Data Link Layer, IEEE 802-2

extended protocol.

66

Table 4.1 – Feature comparison.

Feature ARINC-664 P7 SpaceWire Proposal

Physical Layer Ethernet IEEE-802.3 LVDS Ethernet IEEE-802.3

Speed 10Mbps –100Mbps
2Mbps to

400Mbps
not specified

Encoding Manchester Data-Strobe (DS) not specified

Data Link Layer Ethernet IEEE-802.3 n/a
Ethernet IEEE-802.3

IEEE-802.2

Network Layer IP n/a n/a

Transport Layer UDP n/a n/a

Topologies Multi-star
Point-to-point

Multi-Star

Point-to-point

Multi-Star

Transmission

unit
packet character /packet packet

Payload sizes 17-1471 bytes
10-bit for data

4-bit for control
34-1488 bytes

Time-stamping no no
20-bit field (count of

microseconds)

Payload data

validation
CRC-32 parity bit Koopman-32

Header

validation

IP/UDP header

checksum
n/a Koopman-12

Flow control

Traffic Shaping and

Policing via token-

bucket

specific protocol

Traffic Shaping and

Policing via token-

bucket

Link recovery n/a specific protocol n/a

Routing

validation
n/a n/a via TEST PDU

OS Interface ARINC-653 ports suggested
SSAP-DSAP

channel

67

5 PROTOCOL SPECIFICATION

Once the LLC sub-layer of the new Data Link Layer protocol derives from IEEE

802.2, it is required that the underlying MAC sub-layer of the IEEE 802.3 is

formatted accordingly, in particular by setting the interpretation of the

Type/Length field to Length.

MAC addresses provided by Ethernet device manufacturers are very hard to

track visually, so the next sections establish MAC address formatting rules that

help the network integrator by embedding data into MAC addressing which

reflects the network topology. This initiative can prove itself very useful when

verifying network integrity during its operation.

5.1 Specification of the new UI and TEST Protocol Data Units (PDUs)

The construction of the complete network data frame includes formatting the

IEEE 802.3 header and the new, extended IEEE 802.2 header.

5.1.1 IEEE 802.3 MAC source and unicast destination address formatting

The MAC Source and unicast MAC Destination addresses shall be formatted

according to the following rules (Figure 5.1 and Figure 5.2):

• The three high-order octets, bit positions from 25 to 48, shall use value

0xAA0005 hexadecimal, as this Organizationally Unique Identifier (OUI)

has not been assigned to any organization;

• The two mid-order octets, bit positions from 9 to 24, shall contain the

Equipment ID, as defined by the ARINC-429 specification (Attachment 1-

2 for Equipment Codes); bit positions 21 to 24 shall contain 0000 (only

binary zeros);

• The first low-order octet of the MAC Source address, bit positions from 1

to 8, shall be composed by the physical Port number in the four low-order

bits, bits positions from 1 to 4, and the Unit number in the four high-order

bits, bit positions from 5 to 8.

• The first low-order octet of the unicast MAC Destination address, bit

positions from 1 to 8, shall contain the Unit number in the four high-order

68

bits, bit positions from 5 to 8, followed by trailing zeros in bit positions

from 1 to 4.

Figure 5.1 – MAC Source address formatting.

Figure 5.2 – Unicast MAC Destination address formatting.

The first and most significant octet of the OUI field is binary “10101010”,

indicating that this family of MAC address is “locally administered” (second low-

order bit is 1) and it is an individual address, not a group address (first low-order

bit is 0), as dictated by the IEEE 802.3 standard.

The ARINC-429 specification defines a list of equipment hexadecimal codes

(three hexadecimal digits) that shall be transmitted by the Label 377 (octal) in

bit positions from 11 to 22 (twelve bits). Figure 5.2 illustrates part of the

EQUIPMENT CODES table found in ATTACHMENT 1-2.

AA 00 05 0X XX XX

Unique OUI Equipment ID

(per ARINC-429)

Unit (1 to F) || Port (1 to F)

48 25 24 9 8 1 bit position

AA 00 05 0X XX X0

Unique OUI Equipment ID

(per ARINC-429)

Unit (1 to F)

48 25 24 9 8 1 bit position

69

Figure 5.3 – Equipment Codes per ARINC-429 specification (extract).

The high-order hexadecimal digit in the low-order octet defines the Unit of the

same equipment type (thus having the same Equipment ID). There can be 15

different units of the same equipment (from 1 to F hexadecimal). Unit number 0

is reserved and shall not be used in MAC Source and unicast MAC Destination

addresses.

Since equipment units can have more than one connection to the network

physical medium, a Port field was introduced at the low-order hexadecimal digit

in the low-order octet of the MAC Source address. Each unit can have a total of

15 ports (from 1 to F hexadecimal). The Port field has no meaning in unicast

MAC Destination address and shall be filled with binary zeroes.

5.1.2 IEEE 802.3 MAC destination multicast address formatting

The destination MAC multicast addresses shall be formatted according to the

following rules (Figure 5.3):

• The three high-order octets, bit positions from 25 to 48, shall use value

0xAB0005 hexadecimal, as this Organizationally Unique Identifier (OUI)

has not been assigned to any organization;

• The two mid-order octets, bit positions from 9 to 23, shall contain the

Equipment Group ID, an extension to the Equipment ID defined by the

standard ARINC-429 (ATTACHMENT 1-2 for Equipment Codes); bit

positions 21 to 24 shall contain 0001 (binary one at bit position 21);

70

• The first octet, bit positions from 1 to 8, is reserved and shall contain only

binary zeroes.

Figure 5.4 – MAC destination multicast address formatting.

The first byte of the OUI field is binary 10101011, indicating that this family of

MAC address is a “group address” (first low-order bit is 1), as dictated by the

IEEE 802.3 standard.

The field Equipment Group ID is new and it is an extension to the Equipment ID

as originally defined by the ARINC-429 specification. It facilitates the

construction of MAC multicast addresses destined to reach a collection of

equipments having the same Equipment ID.

5.1.3 IEEE 802.3 MAC destination broadcast address

The use of the IEEE 802.3 MAC broadcast address FF-FF-FF-FF-FF-FF is

discouraged, but allowed and shall be recognized by the device attached to the

network physical medium.

5.1.4 IEEE 802.3 length field

The IEEE 802.3 Type/Length field (2 octets following the MAC Source Address)

shall be interpreted as Length. The valid values for the Length field start at

decimal 46 (bytes) up to decimal 1500 (bytes) inclusively.

5.1.5 IEEE 802.2 DSAP and SSAP fields

The IEEE 802.2 DSAP and DSAP 8-bit fields shall have their least significant bit

set to binary 0, leaving a total of 126 non-zero possible SAP numbers (all even)

available (Figure 5.5):

AB 00 05 1X XX 00

Equipment

Group ID

ReservedUnique OUI

48 25 24 9 8 1 bit position

71

Figure 5.5 – IEEE 802.2. DSAP and SSAP numbers formatting.

SAP numbers shall be associated to specific service implementations at the

transmitting node (SSAP) and at the receiving node (DSAP). SAP number 1

(decimal) is not used in IEEE 802.2 and shall be reserved to TEST PDUs

(DSAP = SSAP = 1).

According to IEEE 802.2, having 0 as least significant bit at a DSAP number

means that this DSAP is an “individual SAP” (not a “group SAP”), and having 0

as least significant bit at a SSAP number means that this SSAP is a

“Command” (not a “Response”). According to IEEE 802.2, the bit following the

least significant bit should be 0 for ordinary SAP numbers and should be 1 for

“reserved” SAP numbers. This protocol specification deviates from IEEE 802.2

in this aspect to allow SAP numbers in a quantity that typically satisfies

embedded network installations.

5.1.6 IEEE 802.2 control field

The IEEE 802.2 Control field shall be used unmodified (Figure 5.6):

• The Poll bit shall be set to 0 in UI PDUS;

• The Poll/Final bit shall be set to 0 in TEST PDUS.

Figure 5.6 – IEEE 802.2. Control field formatting.

0 X X X X X X X

Least signif icant bit

1 1 0 0 0 0 0 0

Least signif icant bit

Poll bit

1 1 0 0 1 1 1 1

Least signif icant bit

Poll/Final bit

UI PDUs TEST PDUs

72

5.1.7 Extended header for DSAP sequence number (UI PDUs)

The original IEEE 802.2 header shall be extended in UI PDUs to include a

Sequence Number (SN) 8-bit field right after the Control field in the transmission

order. This SN field shall be incremented by 1 every time a UI PDU is

transmitted to a specific combination of DSAP and SSAP numbers. The

transmitting node shall keep track of separate Sequence Numbers associated

for each different combination of DSAP and SSAP numbers (see definition and

utilization of “channel” in the next sections).

The SN field shall be set according to the following rules:

• The SN shall count up starting from 1 up to 255 and reset to 1 after

reaching 255; the SN set to 0 shall be used by the sending node only on

the first transmission after a system power-on (hard restart) or system

reset (soft restart).

5.1.8 Extended header for hop count (TEST PDUs)

The original IEEE 802.2 header shall be extended in TEST PDUs to include a

Hop Count (HC) 8-bit field right after the Control field in transmission order.

The HC shall be initialized and modified according to the following rules:

• The HC field shall be set by the transmitting node to the number of

network nodes that a PDU has to cross until it reaches the receiving

node;

• The HC field shall not exceed the value 63 decimal (hexadecimal 0x3F or

binary 0011111);

• The HC field shall be decremented by 1 each time a PDU crosses a

node on its path to the next node following a specific route defined by the

network topology.

The receiving node shall verify that the HC in the TEST PDU is set to zero and

report to the proper error handling software layer if not.

73

Upon receiving a TEST PDU with HC set to zero, the network node shall

retransmit the TEST PDU back to the node of origin with the HC field set to

value 0xC0 hexadecimal (one’s complement of 0x3F or 63 decimal).

At the startup of an embedded network operation, sending a TEST PDU for

validating network routes is essential to its continued correct operation. The

process of transmitting, forwarding and receiving a TEST PDU allows each

network node to build a vision of which network topology branches are valid at a

certain point in time.

5.1.9 Extended header for time-stamping and header-CRC (UI PDUs)

The header extensions in the previous sections result in a 32-bit long header for

both UI and TEST PDUs, while in the original IEEE 802.2 standard for Type 1

operation and U-format (unnumbered) PDUs the header is 24-bit long.

In this new specification, an extra 32-bit long header shall be built and

transmitted right after the IEEE-802.2 extended header exclusively for UI PDUs

consisting of the following fields:

• The 20 most significant bits, bit positions from 13 to 32, shall contain a

the count of microseconds passed the second in normal operation (SN

counting from 1 to 255); after a system power-on or system reset (SN set

to 0), this field shall contain the number of seconds passed after

midnight;

• The 12 least significant bits, bit positions from 1 to 12, shall contain a

Cyclic Redundancy Check (CRC) calculated over the 32-bit IEEE 802.2

extended header and the 20-bit time-stamp using the polynomial

x12+x8+x7+x6+x5+x4+1, equivalent to value hexadecimal 0x8F8

(KOOPMAN et al., 2004); according to the information published, this

polynomial requires 5 bit inversions in order to create an error that is

undetectable by the CRC (the “Hamming Distance” or simply HD) for

data field lengths from 42 to 53 bits.

This Header CRC shall protect vital information at the receiving node, namely

the DSAP and SSAP numbers, the Sequence Number (SN) and the 20-bit long

time-stamp. For instance, a “good” time-stamp value shall allow the receiving

74

node to verify the stability of the transmitting node in producing information at

the expected frequency within a confidence margin, whereas a “bad” time-

stamp is of no use at all.

The 32-bit extended header and the extra 32-bit header making a new 64-bit

header are illustrated in Figure 5.7:

Figure 5.7 – IEEE 802.2 extended 32-bit header and new 32-bit header.

5.1.10 New payload CRC (UI PDUs)

Nesting data frames for encapsulating different network protocols usually

requires that each protocol specific data frame is protected by a separate CRC.

The IEEE 802.3 data packet is protected by a 32-bit CRC transmitted in the

Frame Check Sequence (FCS) field (IEEE, 2012). In this specification, the

application specific data transported by an UI PDU, that is, the IEEE 802.2 PDU

excluding the extended IEEE 802.2 header and the new 32-bit header (a grand

total of 64 bits) shall be protected by a CRC calculated using the following

polynomial equivalent to value 0xBA0DC66B hexadecimal:

(x+1)(x3+x2+1)(x28+x22+x20+x19+x16+x14+x12+x9+x8+x6+1)

This 32-bit polynomial provides a Hamming Distance of 6 in data fields lengths

from 153 to 16360 bits (KOOPMAN, 2002).

The IEEE 802.2 frame encapsulated in the IEEE 802.3 frame is illustrated in

Figure 5.8:

DSAP – 8 bits
Sequence Number

(UI PDUs)SSAP – 8 bits Control – 8 bits SN – 8 bits

HC – 8 bits
Hop Count

(TEST PDUs)

Time Stamp – 20 bits

Count of microseconds passed the second

(SN=1 to 255) or seconds passed after

midnight on power-on or reset (SN=0)

Header CRC – 12 bits

(x12+x8+x7+x6+x5+x4+1)

(0x8F8 – Koopman)

HD=5 at 42-53 bits

Time Stamp and

Header CRC

(UI PDUs)

64 33

32 1

75

Figure 5.8 – IEEE 802.2 PDU encapsulated in IEEE 802.3 data packet.

5.1.11 Unique characteristic of the new data link layer protocol

The most frequent form of IEEE 802.2 encapsulation of an industry standard

protocol (IP for instance) implies in using the “Subnetwork Access Point”

(SNAP) extension to the original header, explicitly:

• Both SSAP and DSAP fields shall contain value 0xAA hexadecimal

(SNAP SAP);

• The Control field shall contain value 0x03 hexadecimal (required for UI

PDU);

• The header shall be extended by extra 5 bytes:

o 3 bytes containing binary zeroes or the OUI (for protocols not

listed by ISO);

o 2 bytes containing the Ethernet Type or the SNAP ID (for

protocols not listed by ISO).

By using the Type/Length of the IEEE 802.3 header as Length and by using

different numbers for the SSAP and DSAP fields of the IEEE 802.2 header

(SSAP ≠ DSAP), both non-SNAP (≠ 0xAA) e non-zero, this new Data Link Layer

protocol becomes an implementation of the IEEE 802.2 standard as it was

originally conceived, more specifically by using DSAP and SSAP as an

alternative to the Ethernet Type field.

The person in charge of the embedded network integration has the privilege of

using all 126 non-zero numbers as SSAP and DSAP, however the use of

already registered SAP numbers currently as listed in Table 5.1 (IEEE, 2020) is

discouraged and shall be avoided:

Payload

IEEE 802.3 – Ethernet Header

(x+1)(x3+x2+1)(x28+x22+x20+x19+x16+x14+x12+x9+x8+x6+1)

(0xBA0DC66B – Koopman)

HD=6 at 153-16360 bits

IEEE 802.3 – Ethernet Payload FCS

Extended IEEE 802.2 Header CRC

76

Table 5.1 – LLC registered (SAP) numbers.

LLC address value
(SSAP & Indiv. DSAP)
Hexadecimal/Binary

Organisation
responsible for the
document

Document references

00 Z000 0000 ISO/IEC JTC1/SC6 ISO/IEC 8802-2 (1)

02 Z100 0000 ANSI IEEE 802.1B (2)

06 Z110 0000 ANSI ARPANET/IP (5)

0A Z101 0000 ANSI IEEE 802.10B (11)

0E Z111 0000 IEC IEC 955 (6)

42 Z100 0010 ISO/IEC JTC 1/SC6 ISO/IEC 10038 (3)

4E Z111 0010 ISO ISO 9506 (8)

E6 Z110 0111 IEC TC13 IEC62056-46 (14)

7E Z111 1110 ISO/IEC JTC 1/SC6 ISO/IEC 8208 (9)

82 Z100 0001 ASHRAE ANSI/ASHRAE 135-1995 (13)

8E Z111 0001 IEC IEC 955 (7)

A6 Z110 0101 ISO/IEC JTC1/SC6 ISO/IEC 8802-2 (12)

AA Z101 0101 ANSI IEEE 802 (4)

FE Z111 1111 ISO/IEC JTC 1/SC6 ISO/IEC TR 9577 (10)

REMARKS *The bit marked 'Z' is the least significant bit and
represents the command/response identifier bit in an
SSAP field; or the address type designation bit (set to the
value '0' - Individual) in a DSAP field. LSAP values that
are neither assigned nor identified for unreserved use are
reserved.
The following numbers correspond to the numbers in
parenthesis shown in the document reference column:
1) Used in ISO/IEC 8802-2 as the Null Address.
2) Used by IEEE 802.1b (IEEE 802.1b: IEEE Standard for
LAN/MANs Network Management) to indicate LLC
Sublayer Management.
3) Used in ISO/IEC 10038 (ISO/IEC 10038: 1993,
Information technology - Telecommunications and
information exchange between systems - LANs - Media
Access Control (MAC) bridges) to identify the Bridge
Spanning Tree Protocol.
4) Used in IEEE 802 (IEEE Std 802-1990, IEEE Standard
for LAN/MANs: Overview and Architecture of Network
Standards) to identify the SNAP SAP.
5) Used in ARPANET (RFC 791: ARPANET/IP, Internet

77

Protocol, DARPA Internet Program Protocol Specification)
to identify the Internet Protocol.
6) Used in IEC 955 (IEC 955: 1989, Process Data
Highway, Type C (Proway C), for Distributed Process
Control Systems) to identify Network Management
Maintenance and Initialization.
7) Used in IEC 955 (IEC 955: 1989, Process Data
Highway, Type C (Proway C), for Distributed Process
Control Systems) to identify Active station list
Maintenance.
8) Used in ISO/IEC 9506 (ISO 9506: 1990, Industrial
Automation Systems - Manufacturing Message
Specification - Part 1: Service Definition 1st Edition; Part
2: Protocol Specification 1st Edition; Part 3: Robot Specific
Message Systems) to identify Manufacturing Message
Service.
9) Used to identify ISO/IEC 8208 (ISO/IEC 8208: 1995,
Information technology - Data Communication - X.25
packet layer protocol for data terminal equipment) as the
Network Layer Protocol.
10) Used to identify ISO/IEC TR 9577 (ISO/IEC TR 9577:
1993, Information technology - Telecommunications and
information exchange between systems - Protocol
identification in the network layer).
11) Used by IEEE 802.10B (IEEE 802.10B: IEEE
Standard for LAN/MANs for Interoperable LAN Security
(SILS) Part B) to identify the Secure Data Exchange
Protocol.
12) Used in ISO/IEC 8802-2 to identify the Source Routing
Route Determination Entity.
13) Used by ASHRAE (American Society for Heating,
Refrigeration, and Air Conditioning Engineering) in
BACnet - A Data Communication Protocol for Building
Automation andControl Networks (ANSI/ASHRAE 135-
1995).
14) Used in IEC62056-46 (Data exchange for meter
reading, tariff and load control – Part 46: Data Link Layer
using HDLC Protocol) to identify the Service user layer
entity.

5.2 Specification of the associated services on UI PDUs

5.2.1 Data validation

The IEEE 802.3 standard defines a Cyclic Redundancy Check (CRC) to be

used by the transmitting and receiving network nodes to generate and validate

the Frame Check Sequence (FCS) field, a 32-bit value. This value is computed

as a function of the contents of the protected fields of the network frame: MAC

Destination and Source addresses, Length/Type field, user data and padding (if

78

any), that is, all frame fields except the FCS itself. The CRC polynomial for

generating and verifying the FCS fields is the following (HAMMOND, 1975):

x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1

This CRC polynomial is informally designated as “CRC-32” in the literature.

A received IEEE 802.3 frame is valid only if all its bits, exclusive of the FCS field

itself, do generate a CRC value identical to the one received.

Once the IEEE 802.3 frame is validated, the IEEE 802.2 payload must be also

validated before the application specific data is passed to the application. This

new Data Link Layer protocol requires two separate CRC validations:

• Firstly, using the same polynomial which generated the 4-octet CRC field

in the IEEE 802.2 extended frame, a 32-bit CRC shall be calculated over

the application specific data and padding (if any);

• Secondly, using the same polynomial which generated the 12-bit CRC

field in the IEEE 802.2 extended header, a 12-bit CRC shall be

calculated over the contents of the extended header including DSAP,

SSAP, Control, Sequence Number and 20-bit Time-Stamp fields, that is,

all fields except the 12-bit CRC field itself.

The IEEE 802.2 extended frame shall be considered valid only if both CRC

calculations are verified. Once the extended frame is validated, the application

specific data shall be extracted and passed to the application.

5.2.2 Introducing the concept of “channel”

The next sections on network traffic conformance depend on the introduction of

a new concept essential to the implementation of the new Data Link Layer

protocol: the “channel”.

A channel represents a unique connection between a SSAP and a DSAP,

therefore establishing a “producer-consumer” relationship between a SSAP (the

“producer”) and a DSAP (the “consumer”).

The SSAP and DSAP numbers in a channel shall not be the same. Even when

one considers that a channel is used to transport one particular data set, it is

important to distinguish the producer of this data set from its consumer.

79

A channel can be “single-point”, when a SSAP connects to a DSAP in a single

network node as in Figure 5.9, or “multi-point”, when a SSAP connects to the

same DSAP number in multiple network nodes as in Figure 5.10.

Figure 5.9 – Example of single-point channels.

Figure 5.10 – Example of a multi-point channel.

The XML (W3C, 2006) texts in Figures 5.9 and 5.10 suggest how a channel can

be defined in a network node configuration file:

• In Figure 5.9, the single-point channel CHN1 establishes a connection

from SSAP 2 to DSAP 4 and the single-point channel CHN2 establishes

CPM1

SAP 2

SAP 8

CPM2

SAP 6

SAP 4

<channel id=“CHN1”>

<SSAP>2</SSAP>

<DSAP>4</DSAP>

</channel>

<channel id=“CHN2”>

<SSAP>6</SSAP>

<DSAP>8</DSAP>

</channel>

CHN2

CHN1

<channel id=“CHN1”>

<SSAP>2</SSAP>

<DSAP>4</DSAP>

</channel>

CPM1

SAP 2 SAP 4

CPM2

SAP 4

CHN1

CPM3

80

a connection from SSAP 6 to DSAP 8; note that the both channel

definitions shall be part of the configuration of both networks nodes

CPM1 and CPM2, such that either node recognize and further validate

only PDUs received with a particular SSAP and only allow transmission

of frames destined to a particular DSAP;

• In Figure 5.10, the multi-point channel CHN1 establishes a connection

from SSAP 2 to DSAP 4; note that the Channel definition shall be part of

the configuration of networks nodes CPM1, CPM2 and CPM3, such that

the last two nodes recognize and further validate only PDUs received

with a particular SSAP, and the first node only allows transmission of

frames destined to a particular DSAP.

In essence, there is no distinction between single and multi-point channels. The

difference resides in how the same channel configuration is deployed in network

configuration files (in two nodes or in multiple nodes).

However, the person in charge of the network integration may choose to pick a

certain range of DSAP numbers to identify them as belonging to a multi-point

channel. For instance: multi-point channels should take DSAP numbers above

100. This can be very helpful when verifying proper network operation, because

a particular DSAP number can be easily associated to a single or to a multi-

point channel.

5.2.3 Traffic shaping

The purpose of shaping network traffic is to force the flow of network data

frames transmitted by a node to be constrained – or submitted to “shaping” – to

protect the network from an abnormal behavior of a node. Shaping network

traffic is the responsibility of the transmitting node and shall be exercised by a

specialized component before a frame passes from the LLC sub-layer to the

MAC sub-layer within the new Data Link Layer protocol.

The algorithm known as “Token Bucket” (TANENBAUM, 2002) has been well

adapted to embedded network environments (ARINC, 2009) as well as to

commercial networks (CISCO, 2020) for performing both traffic shaping and

policing.

81

In this specification, traffic shaping shall be solely used in the transmission of UI

PDUs and shall use the Token Bucket algorithm separately for each configured

channel, as follows:

• The channel bucket is initially filled with T tokens and can hold at the

most C tokens;

• A token is added to the channel bucket every 1/R seconds; if a token

arrives when the channel bucket is full, then it is discarded;

• When a UI PDU of N bytes is ready to be transmitted, ask:

o If at least N tokens exist in the channel bucket, then N tokens are

removed from the channel bucket, and the UDI PDU is passed to

the MAC sub-layer;

o If fewer than N tokens are available, no tokens are removed from

the channel bucket, the UI PDU is not passed to the MAC sub-

layer, an error condition shall be raised and passed to the

application associated to the channel for proper handling.

5.2.4 Traffic policing

The purpose of policing network traffic is to force the flow of network data

frames received by a node to be constrained – or submitted to “policing” – to

protect the node from an abnormal behavior of another node. Policing network

traffic is the responsibility of the receiving node and shall be exercised by a

specialized component before a frame passes from the MAC sub-layer to the

LLC sub-layer within the new Data Link Layer.

In this specification, traffic policing shall be solely used in the reception of UI

PDUs and shall use the Token Bucket algorithm separately for each configured

channel, as follows:

• The channel bucket is initially filled with T tokens and can hold at the

most C tokens;

• A token is added to the channel bucket every 1/R seconds; if a token

arrives when the channel bucket is full, then it is discarded;

82

• When a UI PDU of N bytes is passed from the MAC sub-layer to the LLC

sub-layer, ask:

o If at least N tokens exist in the channel bucket, then N tokens are

removed from the channel bucket, and the UDI PDU is passed to

the application;

o If fewer than N tokens are available, no tokens are removed from

the channel bucket, the UI PDU is not passed to the application,

and an error condition shall be raised and passed to the

application associated to the channel for proper handling.

5.2.5 Taking into account transmission delays

Traffic Policing is particularly important in network star or multi-star topologies.

In aerospace applications, the process of producing data is strictly periodic.

However, data has to be encapsulated in network frames which need to travel

from its origin node to its destination node crossing one or more traffic switching

points, for example Ethernet switches, if this is the chosen network

infrastructure.

Crossing switches imposes transmission delays which have to be taken into

account in the Token Bucket algorithm; otherwise a valid data frame periodically

generated by a transmitting node could be discarded by a receiving node

because it did not pass Traffic Policing. To account for these anomalies

observed at a receiving node in the periodicity of otherwise perfectly periodic

transmissions, the Token Bucket algorithm needs to be programmed with an

“overdraft”.

To assess this overdraft, it is essential to estimate transmission delays for a

particular network data frame while traversing the network infrastructure.

For this purpose, there were several studies conducted by a research group

located in Toulouse, France. Bauer published a method called “Trajectory

Approach” in 2011 (BAUER, 2011), which was perfected by Kemayo in 2013

(KEMAYO et al., 2013). In 2014, Kemayo introduced another method called

“Forward Analysis” (KEMAYO et al., 2014), which was perfected in 2015

(KEMAYO et al., 2015) and extended in 2017 (BENAMMAR et al., 2017).

83

The Appendix A introduces a new method for estimating transmission delays of

a network data frame while crossing an Ethernet switch which is simpler than

the other referenced methods.

5.2.6 Summary of protocol services for UI PDUs on network nodes

The next two figures illustrate the protocol services associated to the LLC sub-

layer and to the MAC sub-layer of the new Data Link Layer protocol on a

transmitting node (Figure 5.11) and on a receiving node (Figure 5.12).

It is each network node’s responsibility to map a channel to one (on single-point

channels) or more network nodes (on multi-point channels).

Figure 5.11 – Protocol services on a transmitting node.

Application writes

message to channel

Insert Time-Stamp

Insert extended header

CRC-12

Insert UI PDU CRC-32

Query network mapping

database for MAC

addresses

Query channel definition

database for DSAP/SSAP

numbers

Perform Traffic Shaping

on channel

Post IEEE 802.3 frame for

transmissionLLC

sub-layer

Add IEEE 802.2 extended

header

Insert Sequence Number

MAC

sub-layer

Add IEEE 802.3 header

and footer

84

Figure 5.12 – Protocol services on a receiving node.

5.3 Routing validation using TEST PDUs

The exact network topology shall be defined during the design phase of the

embedded system it serves.

A route shall be understood as the communication path from a node to another

node across the network. A frame transmitted by a node may find its way to the

intended destination node without crossing any other node or it might have to

be forwarded by one or more intermediate nodes until it reaches its final

destination.

Routes in this specification shall be used in the transport of UI PDUs. However,

the route validation shall be performed using a TEST PDU and shall be

performed at network startup once all nodes announce themselves as capable

of transmitting and receiving data over their physical network connections.

5.3.1 Definition of static routes

For a safe network operation, in particular in aerospace applications where

tolerating a communication failure may be vital to the safety of vehicle, it is

desirable to have more than one route from a node to another node (at least

two).

Ethermet port receives a

IEEE 802.3 frame

Extract Sequence

Number

Extract Time-Stamp

Write payload to channel

Validate FCS

Validate extended header

CRC-12

Validate UI PDU CRC-32

LLC

sub-layer

Identify channel from

channel definition

database using

DSAP/SSAP numbers

Perform Traffic Policing

on channel

MAC

sub-layer Extract IEEE 802.2

payload

85

Tolerating communication failures also means to be able to recognize abnormal

behavior. For this reason, all network routes shall be statically defined, validated

and verified before the network is deemed operational once it presents the

expected behavior. No other routes shall be recognized by the network nodes

and any identified deviations from the original design shall be reported as an

error to the proper software layer.

Network nodes in static route definitions are referred to as “endpoints” and the

physical connection points to the network are referred to as “ports”.

Figure 5.13 illustrates static route definitions on a star topology.

Figure 5.13 – Static route definitions on a star topology.

Note on Figure 5.13 that the element SW1 performs the role of a network traffic

switching device, or simply a switch, and is not required to participate explicitly

in a route definition. However, network traffic switches are programmable

devices and as such need to be properly configured as part of the network

integration process. Traffic switches are essential to star network topologies.

Figure 5.14 illustrates static route definitions on a point-to-point topology

CPM1 CPM2 CPM3

RDC1

SW1
1

2
3

5
4 6

<port number=“1”>

<endp>RDC1</endp>

<endp>CPM2</endp>

</port>

<port number=“1”>

<endp>CPM1</endp>

<endp>CPM3</endp>

</port>

<port number=“1”>

<endp>CPM1</endp>

</port>

<port number=“2”>

<endp>RDC1</endp>

</port>

<port number=“3”>

<endp>CPM2</endp>

</port>

<port number=“4”>

<endp>CPM3</endp>

</port>

Valid route:

RDC1→CPM1
Valid route:

RDC1→CPM3

Valid route:

CPM1>>CPM2

Endpoint names are

“aliases” to MAC

addresses

SW1 is a

programmable

traf f ic switching

device (not a

processing node)

86

Figure 5.14 – Static route definitions on a point-to-point topology.

The XML texts in Figures 5.13 and 5.14 suggest how routes can be defined in a

network node configuration file. There shall be a separate section in the

configuration file for assigning ports to endpoints.

Note that the XML texts in Figure 5.13 for nodes CPM1 and RDC1 do not

mention SW1, but there is a XML text for SW1 suggesting its programming, for

the SW1 configuration shall be also statically defined. The actual configuration

of a traffic switch highly depends on its manufacturer and its format is beyond

the scope of this specification.

Particular attention shall be given to the definition of ports when a node is only

reachable over another network node. In Figure 5.14, the assignment of ports to

endpoints for node RDC1 indicates a route to node CPM1 over two different

ports: 1) via port number 1 directly (attribute “hops” equal 0); 2) via port number

2 indirectly (attribute “hops” equal to 1).

Node CPM2 is directly connected to node RDC1 via port number 2, as indicated

by an entry in the port to endpoint assignment section for node RDC1 (attribute

“hops” equal 0). Therefore, the path from node RDC1 to node CPM1 via its port

number 2 shall cross node CPM2 and only node CPM2. As consequence, the

port to endpoint assignment section in node CPM2 indicates that there is a

direct route to node CPM1 via port number 1 (the attribute “hops” defaults to 0

and can be omitted for simplification).

CPM1

CPM2

CPM3

CPM4

RDC1 RDC2

<port number=“1”>

<endp>RDC1</endp>

</port>

<port number=“2”>

<endp>CPM2</endp>

</port>

<port number=“1”>

<endp hops=“0”>CPM1</endp>

</port>

<port number=“2”>

<endp hops=“0”>CPM2</endp>

<endp hops=“1”>CPM1</endp>

</port>

1

2

1 2

Valid route:

RDC1→CPM2→CPM1

Valid route:

RDC1→CPM1

1

2

5

3 4

<port number=“1”>

<endp>CPM1</endp>

</port>

<port number=“2”>

<endp>RDC1</endp>

</port>

...

87

5.3.2 Route validation

During the start-up phase of the network operation, routes statically defined

during the design phase of the embedded system it serves shall be validated

using the 8-bit Hop Count (HC) field present in the extended IEEE 802.2 header

of TEST PDUs.

A network node shall validate a particular route by transmitting a TEST PDU

over a physical network port associated to a route endpoint. The HC field shall

be initialized with the number of network nodes that the PDU has to cross until it

reaches its final destination. Each node forwarding a TEST PDU shall

decrement the HC field by 1.

The node receiving the TEST PDU with HC set to zero shall return it to the

network node which originally transmitted it by setting the HC field to value

0xC0 hexadecimal (one’s complement of 0x3F hexadecimal or 63 decimal),

swapping the MAC Source and Destination addresses in the IEEE 802.3 header

and modifying the Port number field in the low order octet of the latter.

A network node shall recognize itself as being a route endpoint by comparing its

own Equipment ID and Unit Number with these fields in the MAC Destination

address of the TEST PDU it has just received:

• If these two fields match, the network node is a route endpoint;

• If these two fields do not match, the node is a forwarding node in the

route from the network node associated with the MAC Source address to

the network node associated with the MAC Destination address.

Any network node forwarding a TEST PDU shall verify that the HC field is not

set to zero, for it should be zero only when received by the endpoint of a route.

Should a network node detect such event when forwarding a TEST PDU, it shall

report it to the proper error handling software layer.

A TEST PDU being returned to the network node which transmitted it originally

shall be identified by the HC field set to value 0xC0 hexadecimal.

88

5.3.3 Sample route validation on a star network topology

Figure 5.15 illustrates a simple scenario on a network following a star topology,

where network node RDC1 has static routes to nodes CPM1 and CPM3 over a

network traffic switching device SW1 (reference Figure 5.13).

Figure 5.15 – Sample routing scenario on a star topology.

For network node RDC1, the sequence of steps for validating the route to

CPM1 are as follows:

1) RDC1 sends a TEST PDU with the MAC Destination set to CPM1 and

HC=0;

2) In SW1, CPM1 is connected to port 1;

3) SW1 receives the TEST PDU and forwards the TEST PDU to CPM1 over

port 1; SW1 does not actively participate in the route validation;

4) CPM1 receives and validates the TEST PDU (HC must be zero) from

RDC1, swaps MAC Source and Destination addresses and fixes the Port

number field in both, sets HC to 0xC0 and sends the TEST PDU back to

RDC1;

5) SW1 receives the TEST PDU with HC set to 0xC0 returning from CPM1

and verifies that the destination is RDC1;

6) In SW1, RDC1 is connected to port 2;

7) SW1 forwards the TEST PDU to RDC1 over port 2;

CPM1 CPM3

RDC1

1
2

4

Valid route:

RDC1→CPM1
Valid route:

RDC1→CPM3

SW1

89

8) RDC1 receives the TEST PDU from CPM1 with HC set to 0xC0 and

validates the route from RDC1 to CPM1.

Similar sequence of steps shall be followed by RDC1 for validating the route to

CPM3.

5.3.4 Sample route validation on a point-to-point network topology

Figure 5.16 illustrates a simple scenario on a network following a point-to-point

topology, where network node RDC1 has a static route to node CPM1 over

another network node CPM2 (reference Figure 5.14).

Figure 5.16 – Sample routing scenario on a point-to-point topology.

For network node RDC1, the sequence of steps for validating the route to

CPM1 are as follows:

1) RDC1 sends a TEST PDU with MAC Destination set to CPM1 e HC=1 to

CPM2 over port 2;

2) In CPM2, CPM1 is connected to port 1;

3) CPM2 receives the TEST PDU from RDC1 on port 2, decrements HC by

1 and forwards the TEST PDU to CPM1 over port 1;

4) In CPM1, CPM2 is connected to port 2;

5) CPM1 receives and validates the TEST PDU (HC must be zero) from

RDC1 on port 2, swaps MAC Source and Destination addresses and

CPM1

CPM2

RDC1

1

2

1 2

Valid route:

RDC1→CPM2→CPM1

1

2

90

fixes the Port number field in both, sets HC to 0xC0 and sends the TEST

PDU back to RDC1 over port 2;

6) CPM2 receives the TEST PDU with HC set to 0xC0 returning from CPM1

on port 1 and verifies that the destination is RDC1;

7) CPM2 forwards the TEST PDU to RDC1 over port 2;

8) RDC1 receives the TEST PDU from CPM1 with HC set to 0xC0 and

validates the route from RDC1 to CPM1 over CPM2.

RDC1 shall also validate the direct route to CPM1 by sending a TEST PDU with

MAC Destination address set to CPM1 and HC set to 0 over port 1.

5.4 Specification of the operating system interface to the protocol layers

The implementation of a network protocol in a software environment requires a

more sophisticated structure implemented by an operating system matching the

underlying hardware.

The traditional approach is to implement what is loosely called “protocol stack”,

a designation motivated by the ISO/OSI layered model (a “stack” of layers).

A protocol stack implementation requires the construction of operating system

data structures for supporting the operating system services which actually do

the job.

These operating system services shall offer a software interface to the

applications willing to use the network protocol.

The responsibility of configuring a node to operate a network protocol belongs

to a person who performs the role of the network integrator, which has to make

sure that the network operates as specified by the clients using this network as

a means of communication.

The simplest way of defining the configuration of protocol stack for a particular

network node is to use a text file. A text file can be directly read (or printed) by

humans, although a more formal validation of its correctness usually requires a

software tool.

The “eXtensible Markup Language”, XML for short (W3C, 2008), is a very

convenient means for defining a network node configuration in text format, for it

91

is supported by a wide variety of open-source software tools for writing, reading

and contents validation.

XML file contents validation may require another text file called “XML schema”

(W3C, 1998), which is complementary to the original XML text file.

The next sections describe the set of XML “tags” required to create the network

node configuration file, the data structures to be built by the operating system

and the application programming interface for supporting the new Data Link

Layer protocol.

5.4.1 Network node configuration file

5.4.1.1 Configuration identification

The identification of a given network node configuration requires the

configuration tag pair.

This tag admits two attributes:

• host: the identification of the node for which the configuration is intended,

a single text word with minimum 4 and maximum 8 characters containing

any combination of letters from A to Z and numeric digits from 0 to 9; no

other special characters are allowed (see next section).

• name: the identification of the configuration, a single text word of

minimum 4 and maximum 8 characters containing any combination of

letters from A to Z and numeric digits from 0 to 9; no other special

characters are allowed.

The person in charge of the network integration shall decide whether the

identification of a configuration is unique to the whole network or specific to

particular network node.

The configuration tag pair encapsulates all the XML tag pairs required in a

network node configuration file.

A sample XML text for the configuration tag pair looks as follows (texts in red

font are user entries or comments):

<configuration name="sample" host="CPM1">

 <! all other tag pairs shall be inserted here>

</configuration>

92

5.4.1.2 Node identification

The formatting of MAC addresses associated to a particular network node and

to all other nodes it communicates with requires the nodes tag pair, which

includes a collection of node tag pairs, one for each network node’s Equipment

ID and Unit number.

The node tag admits a single attribute name, a single text word with minimum 4

and maximum 8 characters containing any combination of letters from A to Z

and numeric digits from 0 to 9. No other special characters are allowed.

Each node tag pair requires two other tag pairs for defining the network node’s

own identity and the identity of all other network nodes it shall communicate

with:

• hexid: the three hexadecimal digit Equipment ID associated with the

function executed by the network node per the ARINC-429 standard

(ARINC, 2001);

• unit: a decimal number from 1 to 15 representing the instance of the

present node within the collection of identical Equipment ID in the

network.

A sample XML text for the node identification tag pairs looks as follows:

<nodes>

 <node name="CPM1">

 <hexid>004</hexid>

 <unit>1</unit>

 </node>

 <node name="CPM2">

 <hexid>00B</hexid>

 <unit>1</unit>

 </node>

</nodes>

5.4.1.3 Service identification

The services (SAP numbers) hosted by a particular network node for

communicating with a counterpart implemented by other network node require

the SAPs tag pair, which in turn require a collection of number tag pairs, one for

each implemented SAP.

The number tag admits even decimal numbers from 2 to 254. The SAP number

170 decimal (0xAA hexadecimal) is reserved for the SNAP SAP.

93

A sample XML text for the service identification tag pair looks as follows:

<SAPs>

 <number>2</number>

 <number>8</number>

</SAPs>

5.4.1.4 Channel identification

The channels used by a particular network node for connecting a SSAP to a

DSAP require the channels tag pair, which in turn requires a collection of

channel tag pairs, one for each configured channel.

The channel tag admits a single attribute id, a single text word with 4 characters

containing any combination of letters from A to Z and numeric digits from 0 to 9.

No other special characters are allowed.

The channel tag pair requires two other tag pairs for declaring the SSAP and

the DSAP numbers defining the channels through which data is expected to be

transmitted and received by the presently configured network node:

• SSAP: the SAP number through which data is produced at the source

node;

• DSAP: the SAP number through which data is to be consumed at the

destination node;

• capacity: the maximum number of tokens in the channel bucket used for

Traffic Shaping and Policing;

• tokens: the initial number of tokens in the channel bucket;

• rate: the number of tokens per unit of time to fill the channel bucket.

The SSAP and DSAP tags shall admit the same valid inputs as the number tag

in the previous section on service identification.

A sample XML text for the channel identification tag pairs looks as follows:

94

<channels>

 <channel id="CHN1">

 <SSAP>2</SSAP>

 <DSAP>4</DSAP>

 <capacity>90</capacity>

 <tokens>60</tokens>

 <rate>30<rate/>

 </channel>

 <channel id="CHN2">

 <SSAP>6</SSAP>

 <DSAP>8</DSAP>

 <capacity>60</capacity>

 <tokens>60</tokens>

 <rate>60<rate/>

 </channel>

</channels>

5.4.1.5 Service to host configuration

The services (SAP numbers) hosted by other network nodes require the

services tag pair, which in turn requires a collection of SAP tag pairs, one for

each hosted service.

The SAP tag admits a single attribute number, the SAP number hosted by the

node.

The SAP tag pair requires one other tag pair:

• host: the name of the network node hosting the SAP from a node defined

in the previous node identification section.

A sample XML text for the service to host tag pairs looks as follows:

<services>

 <SAP number="4">

 <host>CPM2</host>

 </SAP>

 <SAP number="6">

 <host>CPM2</host>

 </SAP>

</services>

5.4.1.6 Port to endpoint configuration

Each network node needs one or more physical access to the network. In the

network node configuration file, this physical connection is named “port”.

Each port in a network node is a path to one or more route endpoints in one of

two ways:

95

• Directly, when the route endpoint is a network node connected to the

port;

• Indirectly, when the route endpoint is reached over another network

node.

The configuration of ports requires the ports tag pair, which includes one or

more port tag pairs, one for each port.

The port tag admits a single attribute number, a decimal number from 1 to 15.

The port tag pair includes one or more endp tag pairs, one for each connected

endpoint.

The endp tag admits a single attribute hops, a decimal number from 0 to 63

representing the number of network nodes that a PDU transmitted by the

present network node has to cross until it reaches the route endpoint. This

attribute shall be directly used as the initial Hop Count (HC) field value in TEST

PDUs used for route validation.

When the route endpoint can be reached directly over a port, the hops attribute

has a value of 0 and can be omitted (the value 0 becomes the default value for

the attribute hops).

A sample XML text for the port to endpoint tag pairs looks as follows:

<ports>

 <port number="1">

 <endp hops="0">CPM1</endp>

 </port>

 <port number="2">

 <endp hops="0">CPM2</endp>

 <endp hops="1">CPM1</endp>

 </port>

</ports>

5.4.1.7 Sample configuration files

Figures 6.17 (a) and (b) illustrate network configuration files formatted in XML

for the network nodes CPM1 and CPM2 previously shown in Figure 5.9, (partly

repeated in miniature for reference). The XML tag pairs defining the traffic flow

control parameters for each channel were omitted for simplicity.

96

Nodes CPM1 and CPM2 have defined channels CHN1 and CHN2 connecting

SAP 2 to SAP 4 and SAP 6 to SAP 8 respectively. Note that channel

identification sections shall be the same in both configuration files.

Figure 5.17 – Sample network configuration files.

(a) for CPM1

(b) for CPM2

RTOS

SAP 2 SAP 8

CPM1

CHN1 CHN2

MAC

1

LLC

thread A thread B

CPM2

SAP 6

SAP 4

CHN2

CHN1

RTOS

SAP 6 SAP 4

CPM2

CHN2 CHN1

MAC

1

LLC

thread A thread B

CPM1

SAP 2

SAP 8

CHN2

CHN1

97

From a node identification section, CPM1 can build the MAC addresses for itself

and for CPM2. From a SAP identification section, CPM1 can start the proper

operating system schedulable entities (thread or process) for each configured

SAP. From a channel identification section, CPM1 can establish how each

configured SAP will interact with a SAP implemented by other network node.

From services to host section, CPM1 can find which SAP is hosted by which

network node. From a port to endpoint assignment section, CPM1 can finally

find which network port it shall use for communicating with CPM2.

The network configuration file deployed in CPM2 must be consistent with the

network configuration file deployed in CPM1. If these two files are inconsistent,

a PDU transmitted by CPM1 will be reported as invalid at reception on CPM2 if

the DSAP field in the IEEE 802.2 LLC header is not a SAP hosted by CPM2.

The network configuration file deployed in CPM1 must be also consistent in

itself. For instance, an endpoint referred to in the port to endpoint assignment

section must be a network node (other than CPM1) defined in the node

identification section.

Consistency in network node configuration files is mandatory; therefore they

should be generated by a software application qualified for assisting in the

network integration process.

5.4.2 In-memory data structures

Once all network node configuration files are created and verified, each one

shall be deployed to the corresponding network node.

These configuration files shall be used to manage the services put in place by

the node’s operating system for implementing the protocol layers involved in the

transmission and reception of network data frames built following the IEEE

802.3 MAC and the extended IEEE 802.2 LLC layers introduced by this

specification.

The information elements contained in each section of a network node

configuration file shall be extracted and used for building operating system in-

memory data structures to be accessed by the protocol layer services

responsible for assembling, transmitting, receiving, parsing and validating

network data frames.

98

The next section describes naming conventions used in the after next sections

for describing each one of the data structures.

5.4.2.1 Naming conventions

The naming of the fields composing in-memory data structures shall obey the

following conventions:

• The general format of a structure field shall be

<structure_name>$<data_type>_<field_name>;

• The <structure_name> shall be a three letters mnemonic name of the

parent data structure;

• The <data_type> shall be one of the following primitive data types:

o B – for an 8-bit byte unsigned

o W – for a 16-bit word unsigned

o L – for a 32-bit longword unsigned

o S – for an 8 byte, 64-bit long field of unspecified data type

o R – for processor specific, privileged access memory address

• The <field_name> shall be a short field description with maximum 8

letters.

5.4.2.2 Node Identification Block (NIB)

The essential information for identifying a network node or a family of network

nodes shall be stored in a structure called Node Identification Block (NIB).

The NIB is composed by the following fields (longword aligned):

• NIB$S_NNAME – the mnemonic name of an individual network node or

a family of nodes;

• NIB$S_MACB – the MAC address of the node or family of nodes,

including the MAC prefix for unicast (individual node) or multicast (family

of nodes), the Equipment ID and the applicable Unit number;

• NIB$W_HEXID – the Equipment ID assigned to the node or family of

nodes;

99

• NIB$B_UNIT – the Unit number of the node’s Equipment ID for MAC

unicast or 0 for MAC multicast.

The NIBs configured for a particular node shall be pointed to by another

structure named Network Identification Block List (NIBL).

The NIBL is composed by following fields (longword aligned):

• NIB$L_NIBCNT – the number n of NIBs pointed to by the NIBL;

• one or more memory addresses (pointers) of up to n NIBs.

The memory address of the NIBL shall be pointed to by a special register called

Network Identification Block Base or NIB$R_NIBB. Figure 5.18 illustrates the

NIB, the NIBL and its base register.

Figure 5.18 – Node Identification Block and associated structures.

Note that the first position in the NIBL right after the NIB$L_NIBCNT field shall

be filled by the memory address of the NIB identifying the host node, that is, the

node presently being configured.

NIB$R_NIBB
NIB$L_NIBCNT

pointer to NIB #1

pointer to NIB #2

pointer to NIB #n

NIBL

NIB$S_NNAME

NIB

NIB$W_HEXID

NIB$B_UNIT

0

4

8

4*n

0

4

8

12

16

NIB$S_MACB

20

*NIB pointer #1 reserved to host

NIB

NIB

100

5.4.2.3 Service Identification Block (SIB)

The identification of the services implemented by the host node associated to

SAP numbers shall be stored in a structure called Service Identification Block

(SIB).

The SIB is composed by the following fields (longword aligned):

• SIB$B_SAP – the SAP number;

• SIB$L_PID – the identification (usually a hexadecimal number) given by

the node’s operating system to the schedulable entity (process or thread)

implementing the service.

The SIBs configured for a particular node shall be pointed to by another

structure named Service Identification Block List (SIBL).

The SIBL is composed by following fields (longword aligned):

• SIB$L_SIBCNT – the number n of SIBs pointed to by the SIBL;

• one or more memory addresses (pointers) of up to n SIBs.

The memory address of the SIBL shall be pointed to by a special register called

Service Identification Block Base or SIB$R_SIBB. Figure 5.19 illustrates the

SIB, the SIBL and its base register.

Figure 5.19 – Service Identification Block and associated structures.

5.4.2.4 Channel Control Block (CCB)

The identification of the channels implemented by the host node shall be stored

in a structure called Channel Control Block (CCB).

SIB$R_SIBB
SIB$L_SIBCNT

pointer to SIB #1*

pointer to SIB #2

pointer to SIB #n

SIBL

SIB$B_SAP

SIB

0

4

8

4*n

0

4 SIB$L_PID

SIB

SIB

101

The CCB is composed by the following fields (longword aligned):

• CCB$S_CHNID – the mnemonic identification of the channel;

• CCB$B_SSAP – the SAP source (producer) part of the channel;

• CCB$B_DSAP – the SAP destination (consumer) part of the channel;

• CCB$L_CAPACITY – the maximum count of tokens in the Token Bucket

(to be used in Traffic Shaping and Traffic Policing);

• CCB$L_TOKENS – the initial count of tokens in the Token Bucket (ditto);

• CCB$L_RATE – the rate programmed for the channel in tokens per

second (ditto);

• CCB$L_PID – the identification of the process owning the channel;

• CCB$B_SN – the Sequence Number of the last IEEE 802.2 PDU

received or transmitted over the channel;

• CCB$L_TIMESTP – the Time Stamp of the last IEEE 802.2 PDU

received or transmitted over the channel.

The CCBs configured for a particular node shall be pointed to by another

structure named Channel Control Block List (CCBL).

The CCBL is composed by following fields (longword aligned):

• CCB$L_CCBCNT – the number n of CCBs pointed to by the CCBL;

• one or more memory addresses (pointers) of up to n CCBs.

The memory address of the CCBL shall be pointed to by a special register

called Channel Control Block Base or CCB$R_CCBB. Figure 5.20 illustrates the

CCB, the CCBL and its base register.

102

Figure 5.20 – Channel Control Block and associated structures.

5.4.2.5 Service Hosting Block (SHB)

The identification of the services implemented by network nodes other than the

host node associated to SAP numbers shall be stored in a structure called

Service Hosting Block (SHB).

The SHB is composed by the following fields (longword aligned):

• SHB$L_SHBCNT – the number of longword pairs associating a SAP

number to a network node pointed to by a Network Identification Block

(NIB);

• a longword (zero) filler for aligning the SHB fields to double longwords;

• one or more longword pairs, each consisting of:

o the SAP number associated to the service;

o the memory address of the NIB of the network node implementing

the service.

CCB$R_CCBB
CCB$L_CCBCNT

pointer to CCB #1

pointer to CCB #2

pointer to CCB #n

CCBL

CCB$S_CHNID

CCB

CCB$B_SSAP

CCB$B_DSAP

0

4

8

4*n

0

4

8

CCB$L_PID

CCB$L_RATE

12

16

CCB

CCB$B_SN

CCB$B_TIMESTP

20

24

28

32

CCB$L_CAPACITY

CCB$L_TOKENS

103

SAP numbers associated to multi-point channels shall point to a NIB holding a

MAC multicast address.

 The memory address of the SHB shall be pointed to by a special register called

Service Hosting Block Base or SHB$R_SHBB. Figure 5.21 illustrates the SHB,

and its base register.

Figure 5.21 – Service Hosting Block and base register.

5.4.2.6 Port Assignment Block (PAB)

The assignment of network node ports to route endpoints shall be stored in a

structure called Port Assignment Block (PAB).

The PAB is composed by the following fields (longword aligned):

• PAB$L_NIBCNT – the number of longword pairs associating a route

endpoint pointed to by a Network Identification Block (NIB) to the number

of network nodes that a PDU has to cross until it reaches its final

destination, or number of “hops”;

• a longword (zero) filler for aligning the PAB fields to double longwords;

• one or more longword pairs, each consisting of:

o the memory address of the NIB of the route endpoint;

SHB$R_SHBB
SHB$L_SHBCNT

pointer to NIB #1

pointer to NIB #2

SHB

0

4

8

8*n

0

SAP #1

SAP #2

SAP #n

pointer to NIB #n

12

16

18

4+8*n

NIB

NIB

NIB

104

o the number of hops to the route endpoint.

The PABs configured for a particular node shall be pointed to by another

structure named Port Assignment Block List (PABL).

The PABL is composed by following fields (longword aligned):

• PAB$L_PABCNT – the number of longword pairs associating a port

number to a PAB;

• a longword (zero) filler for aligning the PABL fields to double longwords;

• one or more longword pairs, each consisting of:

o the number of the port from 1 to n;

o the memory address of the PAB associated to the port.

• The memory address of the PABL shall be pointed to by a special

register called Port Assignment Block Base or PAB$R_SIBB. Figure 5.22

illustrates the PAB, the PABL and its base register.

The memory address of the PABL shall be pointed to by a special register

called Port Assignment Block Base or PAB$R_PABB. Figure 5.22 illustrates the

PAB, the PABL and its base register.

Figure 5.22 – Port Assignment Block and associated structures.

PAB$R_PABB
PAB$L_PABCNT

pointer to PAB #1

pointer to PAB #2

PABL

0

4

8

8*n

0

port #1

port #2

port #n

pointer to PAB #n

12

16

18

4+8*n

PAB$L_NIBCNT

pointer to NIB #1

PAB

0

4

8
NIB

NIB

hops to NIB #1

hops to NIB #n

pointer to NIB #n

0

12

8*n

4+8*n

PAB

105

5.4.2.7 Configuration Identification Block (CIB)

The identification of the configuration shall be stored in a structure called

Configuration Identification Block (CIB).

The CIB is composed by following fields (longword aligned):

CIB$S_CNAME – the configuration name, maximum 8 alpha-numeric

characters long;

the memory address of the Node Identification Block (NIB) of the host node.

The memory address of the CIB shall be pointed to by a special register called

Configuration Identification Block Base or CIB$R_CIBB. Figure 5.23 illustrates

the CIB and its base register.

Figure 5.23 – Configuration Identification Block and its base register.

5.4.2.8 Configuration Base Block (CBB)

All the base registers shall be stored in a structure called Configuration Base

Block (CBB) and pointed to by a special register called Configuration Base

Block Summary or CCB$R_CBBS, as illustrated in Figure 5.24.

CIB$S_CNAME

CIB

0

4

pointer to host NIB8
NIB

CIB$R_CIBB

106

Figure 5.24 – Configuration Base Block and its summary register.

5.4.3 Channel Application Programming Interface

The introduction of the “channel” concept with the specification of the new Data

Link Layer protocol shall require a programming interface to applications willing

to use this communication resource in a network of embedded systems on

board of aerospace vehicles.

Applications running in an embedded computing environment can be producers

of a certain data set or consumers of a certain data set, but rarely assume both

roles for the exact same data set. For instance, an application hosted by a

network node in charge of producing vehicle attitude angles with respect to a

reference system can be the consumer of pure sensor data produced by an

inertial reference system and producer of the true attitude angles (usually after

a coordinate transformation) to an attitude control system hosted by another

network node.

The concept of channel frees producer and consumer applications from

interfacing with lower levels of network protocol layers for transporting data from

one node to another.

The next sections describe the functions that shall be made available to

applications willing to use “channels” (and indirectly the new Data Link Layer

protocol) for communicating with their counterparts within a network of

embedded systems.

CBB

0

4

8

12

16

20 PAB$R_PABB

CIB$R_CIBB

NIB$R_NIBB

SIB$R_SIBB

CCB$R_CCBB

SHB$R_SHBB

CBB$R_CBBS

107

The behavior of each function is expressed using a pseudo-code inspired by the

C Programming Language (ISO, 2011). The actual implementation shall be

specific to each different software platform.

5.4.3.1 REGISTER

The purpose of the function REGISTER is to associate an operating system

process (or equivalent task or thread) to a Service Access Point (SAP) pointed

to by a Service Identification Block (SIB) accessed via the SIB$R_SIBB register.

The input argument is:

• byte – the SAP number to be registered for the caller process.

The output argument is:

• SIB* – the address of the SIB built for the caller process.

The return codes are:

• SUCCESS when successfully associating the process to the SAP;

• NOTFOUND when no matching SAP is found in the SIBs;

• NOTFREE when the SAP is already associated to another process.

The pseudo-code is:

int REGISTER(byte SAP,SIB* mySIB)

{

//get the address of SIB base register from CBB

 sib_r_sibb = cbb_r_ccbs[2];

//get the number of SIBs from SIBL

 sib_l_sibcnt = *sib_r_sibb;

//set SAP_FOUND to FALSE;

 SAP_FOUND = FALSE;

//search SIBL for matching SAP

 for(i=1; i<sib_l_sibcnt; i++)

 {

 sib = sib_r_sibb[i];

//check if SAP matches the one in the SIB

 if(sib[0] == (long)SAP)

 {

//check if SAP is already taken by other process

 if(sib[1] != 0) return NOTFREE;

//get process identification (operating system specific)

 SYS$GETPID(pid);

//set SIB$L_PID field to process ID

 sib[1] = pid;

108

//return the address of the SIB to the caller

 mySIB = sib;

 return SUCCESS;

 }

 }

 if(!SAP_FOUND) return NOTFOUND;

}

5.4.3.2 OPEN

The purpose of the function OPEN is to associate a process (or equivalent task

or thread) registered as a Service Access Point (SAP) to a channel pointed to

by a Channel Control Block (CCB) accessed via the CCB$R_CCBB register for

either sending or receiving data. The address of the CCB is return to the caller

process after checking the SAP against the SSAP for sending and the DSAP for

receiving. The caller process identification is stored in the CCB to mark the

channel status as opened.

The input arguments are:

• byte* – the address of the 4 characters channel identification;

• int – the desired access: SEND or RECEIVE.

The output argument is:

• CCB* – the address of the CCB built for the caller process.

The return codes are:

• SUCCESS when successfully associated the process to the channel;

• NOTFOUND when no matching channel is found in the CCBs;

• UNKNOWN when the access is neither SEND nor RECEIVE;

• OPENED when the channel has a process identification associated to it;

• BADSSAP when the SAP does not match the channel SSAP on SEND;

• BASDSAP when the SAP does not match the channel DSAP on

RECEIVE.

The pseudo-code is:

109

int OPEN(byte* chanID,int access,CCB* myCCB)

{

//get the address of CCB base register from CBB

 ccb_r_ccbb = cbb_r_cbbs[3];

//get the number of CCBs from CCBL

 ccb_l_ccbcnt = *ccb_r_ccbb;

//set CHN_FOUND to FALSE;

 CHN_FOUND = FALSE;

//search CCBL for matching channel

 for(i=1; i<ccb_l_ccbcnt; i++)

 {

 ccb = ccb_r_ccbb[i];

//check if channel matches the channel in CCB

 if(ccb[0] == (long)chanID)

 {

 CHN_FOUND = TRUE;

//check if the channel in the CCB has a PID

 if(ccb[4] != 0) return OPENED;

//fetch SAP of the caller from SIB returned by REGISTER

 mySAP = mySIB[0];

//check SSAP for SEND or DSAP for RECEIVE against mySAP

 if(access == SEND)

 {

 if(ccb[1] == mySAP)

 {

//set the PID in CCB to the PID in the SIB of the caller

 ccb[4]= mySIB[1];

//return CCB to the caller

 myCCB = ccb;

 return SUCCESS;

 } else return BADSSAP;

 }else if(access == RECEIVE)

 {

 if(ccb[2] == mySAP)

 {

//set the PID in CCB to the PID in the SIB of the caller

 ccb[4]= mySIB[1];

//return CCB to the caller

 myCCB = ccb;

 return SUCCESS;

 } else return BADDSAP;

 }else return UNKNOWN;

 }

 }

 if(!CHN_FOUND) return NOTFOUND;

}

110

5.4.3.3 SEND

The purpose of the SEND function is to transmit data stored in a memory buffer

over a channel previously opened by the caller process.

The input arguments are:

• CCB* – the address of the CCB to be used by the caller process.

• byte* – the address of the data buffer;

• int – the number of bytes to be sent.

The output argument is:

• int – the number of bytes actually sent.

The return codes are:

• SUCCESS when all data is successfully sent over the channel;

• NOACCESS when the PID of the caller process does not match the PID in

the CCB passed as input argument;

• BADSSAP when the SAP of the caller process does not match the SSAP

of the channel;

• BADNUMBER when the number of bytes passed as input argument is

greater than the maximum number of bytes supported by the new Data

Link Layer protocol (1488 bytes);

• BADSEND when the lower protocol layers return a number of bytes

actually sent that is not equal to the number of bytes passed as input

argument;

• NOTOKENS when the number of bytes to transmit violates the Traffic

Shaping performed by the LCC layer on the channel.

The pseudo-code is:

111

int SEND(CCB* myCCB,byte* buffer,int nbytes,int xbytes)

{

//check if the PID in the CCB matches the PID of the caller

 SYS$GETPID(pid);

 if(pid != myCCB[4]) return NOACCESS;

//check SSAP against SAP from SIB returned by REGISTER

 if(myCCB[1] != mySIB[0]) return BADSSAP;

//check if the number of bytes is greater than MAXBYTES

 if(nbytes > MAXBYTES) return BADNUMBER

//call LLC for sending data (operating system specific)

 LLC$SEND(myCCB, buffer, nbytes, xbytes);

//check the number of bytes actually sent

 if(xbytes == nbytes) return SUCCESS;

// return NOTOKENS if Traffic Shaping violation

 if(xbytes < 0) return NOTOKENS;

 return BADSEND;

}

5.4.3.4 RECEIVE

The purpose of the RECEIVE function is to receive data over a channel

previously opened by the caller process into a memory buffer.

The input arguments are:

• CCB* – the address of the CCB to be used by the caller process.

• byte* – the address of the data buffer;

• int – the number of bytes to be received.

The output argument is:

• int – the number of bytes actually received.

The return codes are:

• SUCCESS when all data is successfully received over the channel;

• NOACCESS when the PID of the caller process does not match the PID in

the CCB passed as input argument;

• BADDSAP when the SAP of the caller process does not match the DSAP

of the channel;

112

• BADNUMBER when the number of bytes passed as input argument is

greater than the maximum number of bytes supported by the new Data

Link Layer protocol (1488 bytes);

• BADRECEIVE when the lower protocol layers return a number of bytes

actually received that is not equal to the number of bytes passed as input

argument;

• NOTOKENS when the number of bytes to transmit violates the Traffic

Policing performed by the LCC layer on the channel.

The pseudo-code is:

int RECEIVE(CCB* myCCB,byte* buffer,int nbytes,int xbytes)

{

//check if the PID in the CCB matches the PID of the caller

 SYS$GETPID(pid);

 if(pid != myCCB[4]) return NOACCESS;

//check DSAP against SAP from SIB returned by REGISTER

 if(myCCB[2] != mySIB[0]) return BADDSAP;

//check if the number of bytes is greater than MAXBYTES

 if(nbytes > MAXBYTES) return BADNUMBER

//call LLC for receiving data (operating system specific)

 LLC$RECEIVE(myCCB, buffer, nbytes, xbytes);

//check the number of bytes actually sent

 if(xbytes == nbytes) return SUCCESS;

// return NOTOKENS if Traffic Policing violation

 if(xbytes < 0) return NOTOKENS;

 return BAD RECEIVE;

}

5.4.3.5 STATUS

The purpose of the function STATUS is to return the current state of a Channel

Control Block (CCB) for a particular channel.

The input arguments are:

• byte* – the address of the 4 characters channel identification.

The output arguments are:

• byte – the SSAP associated with the channel;

• byte – the DSAP associated with the channel;

113

• long – the Token Bucket capacity for the channel;

• long – the initial token count for the channel;

• long – the rate in tokens per second specified for the channel;

• long – the process identification currently owning the channel;

• byte – the Sequence Number of the last PDU transmitted or received

over the channel;

• long – the Time-Stamp of the last PDU transmitted or received over the

channel.

The return codes are:

• SUCCESS when successfully returned the contents of the CCB to the

caller process;

• NOTFOUND when no matching channel is found in the CCBs;

The pseudo-code is:

int STATUS(byte* chanID,

 byte ssap,

 byte dsap,

 long capacity,

 long tokens,

 long rate,

 long pid,

 byte sn,

 long timestamp)

{

//get the address of CCB base register from CBB

 ccb_r_ccbb = cbb_r_cbbs[3];

//get the number of CCBs from CCBL

 ccb_l_ccbcnt = *ccb_r_ccbb;

//search CCBL for matching channel

 for(i=1; i<ccb_l_ccbcnt; i++)

 {

//check if channel matches the channel in CCB

 ccb = ccb_r_ccbb[i];

 if(ccb[0] == (long)chanID)

 {

 ssap = ccb[1];

 dsap = ccb[2];

 capacity = ccb[3];

 tokens = ccb[4];

114

 rate = ccb[5];

 pid = ccb[6];

 sn = ccb[7];

 timestamp = ccb[8];

 return SUCCESS;

 }

 }

 return NOTFOUND;

}

5.4.3.6 CLOSE

The purpose of the function CLOSE is to remove the association of a process

(or equivalent task or thread) to a channel pointed to by a Channel Control

Block (CCB). The process identification is stored in the CCB is cleared to mark

the channel status as closed.

The input arguments are:

• CCB* – the address of the CCB built for the caller process.

There are not explicit output arguments.

The return codes are:

• SUCCESS when successfully removed the association of process to the

channel;

• NOTFOUND when no matching CCB is found in the CCBL;

• NOACCESS when the PID of the caller process does not match the PID in

the CCB passed as input argument.

The pseudo-code is:

int CLOSE(CCB* myCCB)

{

//get the address of CCB base register from CBB

 ccb_r_ccbb = cbb_r_cbbs[3];

//get the number of CCBs from CCBL

 ccb_l_ccbcnt = *ccb_r_ccbb;

//set CCB_FOUND to FALSE;

//search CCBL for matching channel

 for(i=1; i<ccb_l_ccbcnt; i++)

 {

 if(ccb_r_ccbb[i] == myCCB)

 {

 ccb = ccb_r_ccbb[i];

 break;

115

 }

 else return NOTFOUND

 }

//check if the CCB has a matching PID

 SYS$GETPID(pid);

 if(myCCB[4] != pid) return NOACCESS;

//clear the PID in the CCB

 myCCB[4] = 0;

 return SUCCESS;

}

5.4.3.7 UNREGISTER

The purpose of the function UNREGISTER is to remove the association of a

process (or equivalent task or thread) to a Service Identification Block (SIB)

accessed via the SIB$R_SIBB register. The process identification stored in the

SIB is cleared to free the SAP to another process.

The input argument is:

• SIB* – the address of the SIB built for the caller process.

There are not explicit output arguments.

The return codes are:

• SUCCESS when successfully removed the association of the process with

the SAP pointed by the SIB;

• NOTFOUND when no matching SIB is found in the SIBL;

• NOACCESS when the PID of the caller process does not match the PID in

the SIB passed as input argument.

The pseudo-code is:

int UNREGISTER(SIB* mySIB)

{

//get the address of SIB base register from CBB

 sib_r_sibb = cbb_r_ccbs[2];

//get the number of SIBs from SIBL

 sib_l_sibcnt = *sib_r_sibb;

//set SAP_FOUND to FALSE;

 SAP_FOUND = FALSE;

//search SIBL for matching SAP

 for(i=1; i<sib_l_sibcnt; i++)

 {

116

//check if SIB matches the one in the SIBL

 if(sib_r_sibb[i] == mySIB)

 {

 sib = sib_r_sibb[i];

 break;

 }

 else return NOTFOUND;

//check if the CCB has a matching PID

 SYS$GETPID(pid);

 if(mySIB[4] != pid) return NOACCESS;

//clear the PID in the SIB

 mySIB[1] = 0;

 return SUCCESS;

}

5.4.3.8 Operating system specific functions

The functions that build the Channel Application Programming Interface depend

on lower level functions performed either natively by the operating system or

added on by the LLC and MAC network layers.

One of the operating system function required by the functions involved in

implementing the concept of channel retrieves the process (or equivalent task

or thread) identification assigned to it by the operating system at its creation.

This function is referred to in the previous sections as SYS$GETPID.

Two other important operating system functions are required by LLC$SEND

and referred to as SYS$GETMICS, which retrieves the count of microseconds

passed the second, and as SYS$GETSECS, which retrieves the number of

seconds passed after midnight.

Two lower level LLC layer functions are referred to in the previous sections as

LLC$SEND and LLC$RECEIVE. It is important to note that these functions

handle only the transmission and reception of UI PDUs.

It is beyond the scope of this specification to write pseudo-code for these

functions, for they highly depend on the operating system architecture, but they

shall behave as follows.

LLC$SEND(myCCB, buffer, nbytes, xbytes)

// myCCB – address of the Channel Control Block

// buffer – address of the data buffer

// nbytes – number of bytes to be transmitted

// xbytes – number of bytes actually transmitted

117

• perform Traffic Shaping on the channel and return error if the bucket

does not have enough tokens to transmit all the data (nbytes plus the

LLC overhead);

• get the DSAP and SSAP numbers from the CCB;

• get the Sequence Number (SN) from the CCB (may be 0 after system

power-on or system reset), increment it by 1 or reset 1 to if the current

SN is 255;

• build the 20-bit Time-Stamp by calling SYS$GETMICS if SN is not 0 or

by calling SYS$GETSECS if SN is 0;

• build the UI PDU with the DSAP and SSAP, the Control field set to UI,

the new SN, the fresh Time-Stamp and copying the application data;

• complete the UI PDU calculating the payload and header CRCs;

• call the MAC layer for transmitting the UI PDU;

• wait until the MAC layer completes transmission and returns the number

of bytes actually transmitted;

• update the SN and Time-Stamp in the CCB of the caller;

• return the number of bytes actually transmitted to caller.

In turn, the MAC layer shall:

• use the DSAP saved in the CCB to search the Service Hosting Block list

(SHBL) for a SHB with a matching SAP;

• get the Network Identification Block (NIB) of the node hosting the DSAP

from the next position in the SHB;

• get the MAC address of the destination node the from the NIB;

• get the base of the MAC address of the host node from the Network

Identification Block List (NIBL);

• if the MAC address is unicast, search the Port Assignment Block List

(PABL) for all Port Assignment Blocks (PABs) that have a NIB matching

the NIB of the destination node and save the Port numbers from the

118

PABs found to complete the MAC Destination address; if the MAC

address is multicast, proceed to the next step

• complete the IEEE 802.3 data packets with the Length, Preamble and

Start-of-Frame Delimiter, copying the UI PDU and calculating the Frame

Check Sequence (FCS);

• call the PHY layer for transmitting the IEEE 802.3 data packets over the

saved Port numbers if the Destination MAC address is unicast or over all

ports if the Destination MAC address is multicast;

• wait until the PHY layer completes transmission and returns the number

of bytes actually transmitted;

• return to LLC layer.

LLC$RECEIVE(myCCB, buffer, nbytes, xbytes)

// myCCB – address of the Channel Control Block

// buffer – address of the data buffer

// nbytes – number of bytes to be received

// xbytes – number of bytes actually received

• use the SSAP saved in the CCB to search the Service Hosting Block list

(SHBL) for a SHB with a matching SAP;

• get the Network Identification Block (NIB) of the node hosting the SSAP

from the next position in the SHB;

• get the Source MAC base address of the source node the from the NIB;

• get the Destination MAC base address of the host node from the

Network Identification Block List (NIBL);

• call the MAC layer for receiving data packets with the Source MAC and

Destination MAC;

• wait until the MAC layer completes reception;

• check IEEE 802.2 extended header and payload CRC;

• compare the SN of the UI PDU received with the SN saved into the caller

CCB;

119

• if the SN of the received UI PDU is less or equal to the saved SN,

discard the packet and return error, otherwise proceed to next step;

• perform Traffic Policing on the channel and return error if the bucket

does not have enough tokens to receive all the data (the complete UI

PDU);

• copy the payload of the UI PDU into the buffer of the caller;

• save the SN and Time-Stamp from the IEEE 802.2 extended header into

the caller CCB;

• return the number of bytes actually received to the caller.

In turn, the MAC layer shall:

• call the PHY layer for receiving IEEE 802.3 data packets on all physical

network ports;

• wait until the PHY layer completes reception and returns the number of

bytes actually received;

• check the FCS of the received IEEE 802.3 data packet;

• check the MAC Destination address of the IEEE 802.3 received data

against the saved MAC host node base address;

• check the MAC Source address of the IEEE 802.3 received data against

the saved MAC source node base address;

• save the Port field from the Source MAC address for possible further

use;

• extract the UI PDU from the IEEE 802.3 received data packet;

• deduct the number of bytes of the IEEE 802.3 header and footer from the

number of bytes received from the PHY layer;

• return to LLC layer.

120

5.4.3.9 The “channel” concept and the BSD socket interface

The abstract construct called “socket” was introduced by the Berkeley Software

Distribution (BSD) version 4.2 of the UNIX operating system as network

connection end-point for sending and receiving data (COMER, 1995).

The communication model used with sockets between two network nodes is the

“client-server” (FREEBSD, 2020), whereby the client sends and the server

receives data using a digital communication protocol, most frequently the

Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP)

over the Internet Protocol (IP). Under the perspective of the “channel” concept,

a client plays the role of a data producer and a server plays the role of a data

consumer.

Figure 5.25 places side-by-side the socket programming model for using UDP

over IP and the channel Application Programming Interface (cAPI) for a typical

client or data producer application.

Figure 5.25 – BSD socket and the “channel” API for a client application.

The socket() system call associates the socket with an “address family”,

AF_INET for instance for IP, and a protocol, SOCK_DGRAM for instance for

UDP. The cAPI does not require such operation, once the underlying protocol is

completely hidden to the application.

REGISTER()

OPEN()

SEND()

CLOSE()

UNREGISTER()

“channel” concept

socket()

bind()

sendto()

close()

BSD socket

121

The bind() system call associates the client’s IP address and UDP port number

to the socket. The cAPI requires that the process (or task) registers itself to a

Service Access Point (SAP) and opens a channel for sending. This last

operation checks whether the SAP number registered to the process is a

Source Service Access Point (SSAP) in the Channel Control Block (CCB)

structure.

The sendto() system call requires the IP address and UDP port number of the

server while the cAPI requires the address of the CCB structure besides the

address and size of the data buffer.

The close() terminates the socket, while the cAPI requires the process closing

the channel and unregistering itself from the SAP.

Figure 5.26 places side-by-side the socket programming model for using UDP

over IP and the cAPI for a typical server or data consumer application.

Figure 5.26 – BSD socket and the “channel” API for a server application.

Conversely, the bind() system call associates the server’s IP address and UDP

port number to the socket. The cAPI requires that the process (or task) registers

itself to a Service Access Point (SAP) and opens a channel for receiving. This

last operation checks whether the SAP number registered to the process is a

Destination Service Access Point (DSAP) in the Channel Control Block (CCB)

structure.

REGISTER()

OPEN()

RECEIVE()

CLOSE()

UNREGISTER()

“channel” concept

socket()

bind()

recvfrom()

close()

BSD socket

122

For the server application, it is usual to call recvfrom() specifying an UDP port

number leaving the socket open for receiving UDP datagrams from any IP

address and the address and size of the data buffer. The cAPI requires the

address of the CCB structure besides the address and size of the data buffer.

The socket interface requires previous knowledge of the IP addresses and UDP

port numbers for both client and server applications.

The cAPI relies on structures that are built by the operating system from a

configuration file, that is, a process is not free to choose registering to a SAP or

opening a channel other than those previously configured by the system

integrator.

5.4.4 Route testing programming model

The test for valid network routes supported by the introduction of the Hop Count

(HC) field in the extended header of TEST PDUs shall also depend on a lower-

level operating system routine that becomes part of the implementation of the

new Data Link Layer protocol.

This routine highly depends on the operating system architecture, as it is the

case for all routines handling input and output to a physical device, but its

behavior shall be as follows:

LLC$TEST(nodename, portnumber, status)

// nodename – address of the buffer containing the name

// of the destination node

// portnumber – number of the physical port for which

// the route will be tested

// status – VALID/INVALID boolean for the route

// to the destination node

• search the Node Identification Block List (NIBL) for a NIB with a matching

the destination node name and save the NIB;

• search the Port Assignment Block list (PABL) for a PAB with a matching

port number;

• search the PAB found for a matching NIB and save the Hop Count (HC)

to the destination node;

• build the IEEE 802.2 PDU with the DSAP and SSAP set to 1, the Control

field set for TEST PDU and the HC field;

123

• call the MAC layer for transmitting the TEST PDU;

• wait until the MAC layer completes transmission;

• call the MAC layer for receiving a TEST PDU;

• wait until the MAC layer completes reception of a TEST PDU;

• check HC and return VALID if HC is set to 0xC0 hexadecimal or return

INVALID otherwise.

For transmitting a TEST PDU, the MAC layer shall:

• get the MAC address of the destination node the from the NIB;

• get the base of the MAC address of the host node from the Network

Identification Block List (NIBL); the only part missing is the Port;

• use the Port from the PAB found to complete MAC Source address.

• complete the IEEE 802.3 data packet with the Length, Preamble and

Start-of-Frame Delimiter, copying the TEST PDU and calculating the

Frame Check Sequence (FCS);

• save the MAC Source and the MAC Destination base addresses;

• call the PHY layer for transmitting the IEEE 802.3 data packet;

• wait until the PHY layer completes transmission;

• return to LLC layer.

For receiving a TEST PDU, the MAC layer shall:

• call the PHY layer for receiving IEEE 802.3 data packets;

• wait until the PHY layer completes reception;

• check the FCS of the received IEEE 802.3 data packet;

• check the MAC Source address of the IEEE 802.3 received data against

the saved MAC destination node base address;

• save the Port field from the Source MAC address for possible further

use;

124

• check the MAC Destination address of the IEEE 802.3 received data

against the saved MAC host node base address;

• check the IEEE 802.2 Control field for a TEST PDU;

• extract the TEST PDU from the IEEE 802.3 received data packet;

• return to LLC layer.

The MAC layer behavior on transmitting and receiving TEST PDUs shall be

different from its behavior on transmitting and receiving UI PDUs in the sense

that the LLC$TEST service requires the transmission and the reception of a

TEST PDU in the same operation.

Testing network routes shall be performed in an orderly fashion by each

network node as a mandatory step for its integration to an embedded network. It

shall be considered “good practice” to let one and only one node at a time to

validate routes to other nodes. The transmission and reception of TEST PDUs

in the process of validating network routes shall not take more than a couple of

milliseconds on a typical Ethernet physical medium.

5.4.5 UI and TEST PDU routing programming model

One important task that some of the nodes in a network need to perform, in

particular those following the “point-to-point” topology, is to route IEEE 802.3

data packets containing either a TEST or an UI PDU if the node recognizes

itself not being the end recipient by checking the Destination MAC address of a

received data packet.

If the Destination MAC address does not correspond to the base MAC address

of the node, the IEEE 802.3 data packet has to be retransmitted to the network

using the proper physical port, as prescribed by the network configuration

assigned to the node.

The process of recognizing the need of retransmitting a data packet must be as

efficient as possible and shall consume only minimum computing resources of

the software and hardware platforms.

The behavior of the MAC layer in this scenario shall be as follows for either a

TEST or UI PDU:

125

• save the address of the NIB pointing to the host node in order to avoid

searching for it every time a new data packet is received;

• compare the Destination MAC address with the host node MAC base

address from the host NIB;

• search the Network Identification Block List (NIBL) for a NIB that has a

base MAC address matching the Destination MAC address;

• check the Control field of the IEEE 802.2 PDU and proceed to the one of

the next steps:

o if the PDU is UI:

▪ search the Port Assignment Block List (PABL) for one or

more Port Assignment Blocks (PABs) that have a NIB

matching the NIB of the destination node and save the Port

numbers from the PABs;

▪ call the PHY layer for transmitting the data packet over the

saved Port numbers.

o if the PDU is TEST and HC is not equal to 0xC0:

▪ search the NIB List for a NIB having a matching base

Source MAC address and report to the proper error

handling software layer if none found;

▪ save the Port number returned from the PHY layer over

which the TEST PDU was received together with the base

Source MAC address;

▪ search the Port Assignment Block List (PABL) for one or

more Port Assignment Blocks (PABs) that have a NIB

matching the NIB of the destination node;

▪ the HC field in the TEST PDU shall be 1 unit greater than

the HC stored in the PAB for the NIB, otherwise report it to

the proper error handling software layer;

▪ subtract 1 unit from the HC field in the TEST PDU

126

▪ call the PHY layer for transmitting the data packet over the

saved Port numbers.

o If the PDU is TEST and HC is equal to 0xC0:

▪ search the saved Port numbers and associated base

Source MAC addresses for a matching MAC address and

report to the proper error handling software layer if none

found;

▪ call the PHY layer for transmitting the data packet over the

saved Port number.

Since this operation is likely to be repeated many times during the network

operation, it is convenient to provide a cache memory for quickly retrieving the

Port numbers for a particular Destination MAC address.

This caching can be done by simply associating the Hex ID and Unit fields of

MAC addresses directly to one or more Port numbers as data packets are

received and routed by the node. This cache memory shall be looked up first,

for a likely match is expected to occur.

This cache memory layout for the purpose of routing is suggested in Figure

5.27.

Figure 5.27 – Cache layout for data packet routing.

The “Port Map” is built as follows (see Figure 5.28):

• bit position 1 – must be clear (represents Port number 0 reserved for

multicast transmissions);

Hex ID Unit 0MAC unicast prefix

Hex ID Unit Port Map

Port Assigment Cache

Unicast MAC Destination Address

127

• bit positions 2 to 16 – the Port numbers to be used for transmission

represented by a bit set at the position equal to 1 plus the Port number

(more than one bit can be set).

Figure 5.28 – Port Map for caching Destination MAC to port number.

The Port Assignment Cache shall be populated in two ways:

• by extracting the Hex ID and Unit fields of the Destination MAC address

of the packet received after validating against the PABs, generating the

Port Map with the Port numbers saved from the PABs and inserting a

row in the cache;

• by extracting the Hex ID and Unit fields of the Source MAC address of

the packet received, validating against the NIBs, generating the Port Map

with the Port number returned from the PHY layer and inserting a row in

the cache.

The operation of populating the cache will cost extra computing resources until

all IEEE 802.3 data packets expected to cross the node have been received at

least once.

Therefore, testing the valid routes using TEST PDUs as described in the

previous sections shall produce this exact effect for the benefit of the overall

performance of the network after startup.

5.4.6 Network traffic switching

On network “star” or “multi-star” topology the presence of one or more network

traffic switching devices is essential.

They are specially designed to quickly route traffic from one switch port to

another port or ports (when multicasting). The high-end products can be very

sophisticated and capable of performing network traffic classification up to the

0

Port Positions

[15..1]

16 1

128

Layer 3 of the ISO-OSI model, traffic shaping and policing, and segregating

broadcast domains by the means of “Virtual LANs”, or VLANs (SEIFERT, 2000).

Traffic switches shall be programmed as part of the network infrastructure.

Although they do not run typical application code, their configuration shall be

consistent with the configuration of the remaining network nodes.

For instance, the network illustrated in Figure 5.13 shows a switch SW1 routing

traffic from node RDC1 to nodes CPM1 and CPM3 and traffic from node CPM1

to node CPM2. The XML text in the same figure illustrates how SW1 shall be

configured with node CPM1 on port 1, RDC1 on port 2, CPM2 on port 3 and

CPM3 on port 4.

However, a more appropriate XML text for programming a switch should define

two VLANs, one for nodes RDC1, CPM1 and CPM3 and a second for nodes

CPM1 and CPM2, as illustrated in Figure 5.29.

Figure 5.29 – VLAN programming example for the network in Figure 5.13.

The port 1 of the switch SW1 is called “multi-VLAN port”, once it is part of two

different VLANs (CISCO, 2014).

The suggested XML text could be used to generate a switch configuration file

following the format required by the device manufacturer.

CPM1 CPM2 CPM3

RDC1

SW1
1

2
3

5
4 6

<VLAN name=”VLAN1”>

<port number=”1”>

<endp>CPM1</endp>

</port>

<port number=”2”>

<endp>RDC1</endp>

</port>

<port number=”4”>

<endp>CPM3</endp>

</port>

</VLAN>

<VLAN name=”VLAN2”>

<port number=”1”>

<endp>CPM1</endp>

</port>

<port number=”3”>

<endp>CPM2</endp>

</port>

</VLAN>

129

6 EXPERIMENTAL RESULTS USING THE CONCEPT OF “CHANNEL”

6.1 Introduction

Validating all the aspects involved in the introduction of a new network protocol

involves resources and time that exceed the scope of this work.

Preparing and executing tests and validating test results in general add

significant cost to any new system development program. Functional

requirements have to be extracted from the protocol specification,

representative software and hardware platform needs to be put in place and

used to perform all the test cases created for validating the requirements.

However, validating the concept of “channel” introduced with the new Data Link

Layer protocol is feasible under certain circumstances within the scope of this

work. The channel is a new virtual entity that does not have similarity with other

equivalent communication resource in current existing network protocol

programming support. Therefore validating its use is an important contribution

to the completeness of this work. A channel virtually connects two entities

executing at the Application Layer, as illustrated in Figure 6.1 below.

Figure 6.1 – The “channel”: a virtual connection at the Application Layer.

6.2 Scenario for the test case

For the purpose, a simple “producer-consumer” scenario will be created with

following objectives:

• Validate the in-memory structures described in Section 5.4.2;

• Validate the programming interface described in Section 5.4.3;

130

• Validate the format of the data frame built as described in Section 5.1;

• Validate the implementation of Traffic Shaping at the “producer” node

and Traffic Policing at the “consumer” node as described in Sections

5.2.3 and 5.2.4.

A Data Link Layer protocol is not responsible for actually transmitting a data

frame over a network wire. However, it is important to validate the integrity of

the data frame to be passed to the Physical Layer for transmission. For that, an

open-source software tool will be used: a Wireshark Generic Dissector (WSDG,

2020).

A piece of software emulating the lower-level system routine responsible for

passing a data frame from the Data Link Layer to the Physical Layer

(LLC$SEND described in Section 5.4.3.8) will write records to a disk file

following the Wireshark Packet CAPture (PCAP) format. The counterpart

emulating the receiving side (LLC$RECEIVE) will read the records and pass it

to the Data Link Layer. The Wireshark tool itself will be used for validating the

data frames written to the PCAP disk file.

The next sections describe the simple “producer-consumer” scenario: the

network topology, the configuration of the two nodes involved; the configuration

of the “channel” used to transmit and receive data, and the test case itself.

6.3 Network topology

The simple point-to-point network topology connecting nodes CPM1 and CPM2

is illustrated in Figure 6.2.

Figure 6.2 – Simple network topology for validating the “channel” concept.

node “CPM1”

SAP 114

channel ID “1”

SAP 116

node “CPM2”

131

6.4 Network nodes configuration

The network used for this demonstration has only two nodes named “CPM1”

and “CPM2” with following configurations:

Node CPM1

• Equipment Hex ID: 0x341 (Satellite Attitude Control Unit - ACU)

• Unit number: 1

• Number of network ports: 1

• Host of SAP: 114 (0x72)

Node CPM2

• Equipment Hex ID: 0x341 (Satellite ACU)

• Unit number: 2

• Number of network ports: 1

• Host of SAP: 116 (0x74)

6.5 Channel configuration

There will be only one channel available for communication between nodes

CPM1 and CPM2 with following configuration, assuming 1 token per byte for

applying the Token Bucket algorithm:

• Channel ID: 1

• SSAP: 114 (0x72)

• DSAP: 116 (0x74)

• Capacity: 90 tokens (limit)

• Tokens: 60 tokens (initial)

• Rate: 30 tokens/second

6.6 Test case description

6.6.1 Role of node CPM1

The test case devised for experimenting with the concept of “channel” works as

follows for CPM1:

132

• call REGISTER for registering itself to SAP 114 (0x72);

• call OPEN for opening channel 1;

• call SEND for sending a 34 byte message over channel 1;

• wait 3 seconds;

• call SEND for sending a second 34 byte message over channel 1;

• wait 1 second;

• call SEND for sending a third 34 byte message over channel 1;

• call STATUS for displaying the status of channel 1 after transmitting

three messages;

• call CLOSE for closing the channel 1;

• call UNREGISTER for unregistering itself from SAP 114.

The expected results are as follows, taking into account the UI PDU format

including its extended header, as described in Section 6.1, and the behavior of

the Traffic Shaping at the transmitting end, as described in Section 6.2.3:

• CPM1 shall successfully register itself as SAP 114;

• CPM1 shall successfully open channel 1;

• CPM1 shall successfully send messages over channel 1 because its

registered SAP matches the SSAP of channel 1;

• three records of length 60 bytes (minimum IEEE 802.3 packet length

excluding 4 bytes of the Frame Check Sequence) shall be written to the

PCAP disk file;

• all three SEND operations shall conclude successfully, that is, no

operating shall be blocked by Traffic Shaping;

• the first record shall have the Sequence Number (SN) set to 0 and its

Time-Stamp field shall be set to the correct number of seconds passed

after midnight;

133

• the second record shall have the Sequence Number (SN) set to 1 and its

Time-Stamp field shall be set to the correct number of microseconds

passed after the second;

• the third record shall have the Sequence Number (SN) set to 2 and its

Time-Stamp field shall be set to the correct number of microseconds

passed after the second.

It is important to note that passing through Traffic Shaping validates the correct

application of the Token Bucket algorithm at the transmitting end for channel 1

because of following reasons:

• the capacity of the Token Bucket is set to 90 and its initial content is set

to 60;

• the first transmission has the cost of 60 tokens (equal to the size in bytes

of the IEEE 802.3 data packet excluding 4 bytes of the Frame Check

Sequence);

• after the first transmission, the balance of the Token Bucket is 60 – 60 =

0;

• after passing 3 seconds, the balance of the Token Bucket is 0 + 30x3 =

90, the maximum value equal to the Token Bucket capacity;

• the second transmission has the cost of 60 tokens (same packet length

as the first);

• after the second transmission, the balance of the Token Bucket is 90 –

60 = 30;

• after passing 1 second, the balance of the Token Bucket is 30 + 30x1 =

60;

• the third transmission has the cost of 60 tokens (same packet length as

the first);

• since the balance of the Token Bucket is 60, the third transmission is

allowed to pass, even after passing only 1 second after the previous

transmission.

134

If the capacity of channel 1 had been set to 60 (instead of 90), CPM1 would

need to wait at least 2 seconds before transmitting the third 34-byte long

message.

The choice of the “channel” Rate parameter in the order of tens of tokens and

time intervals in the order of seconds is justified for two reasons: 1) the CPM1

and CPM2 applications depend of suspending themselves for a period of time

and the sleep() system call used in this particular implementation does not

guarantee millisecond granularity in its operation; 2) neither code was expected

to run using real-time scheduling priority, for it was developed operating system

independent and as a simple console application.

6.6.2 Role of node CPM2

The test case devised for experimenting with the concept of “channel” works as

follows for CPM2:

• call REGISTER for registering itself to SAP 116 (0x74);

• call OPEN for opening channel 1;

• call RECEIVE for receiving a 34 byte message over channel 1;

• the RECEIVE operation shall complete immediately;

• call RECEIVE for receiving a second 34 byte message over channel 1;

• the RECEIVE operation shall complete after approximately 3 seconds;

• call RECEIVE for receiving a third 34 byte message over channel 1;

• the RECEIVE operation shall complete after approximately 1 second;

• call STATUS for displaying the status of channel 1 after transmitting

three messages;

• call CLOSE for closing the channel 1;

• call UNREGISTER for unregistering itself from SAP 116.

The timing information in each PCAP record header will be used to mimic the

time interval spent by CPM2 while waiting for CPM1 to transmit the second and

third message, 3 seconds and 1 second respectively.

135

The expected results are as follows, taking into account the UI PDU format,

including its extended header, as described in Section 6.1 and the behavior of

the Traffic Policing at the receiving end, as described in Section 6.2.4:

• CPM2 shall successfully register itself as SAP 116;

• CPM2 shall successfully open channel 1;

• CPM2 shall successfully receive messages over channel 1 because its

registered SAP matches the DSAP of channel 1;

• three records of length 60 bytes (minimum IEEE 802.3 packet length

excluding 4 bytes of the Frame Check Sequence) shall be read from the

PCAP disk file;

• all three SEND operations shall conclude successfully, that is, no

operating shall be blocked by Traffic Policing;

• the first record shall have the Sequence Number (SN) set to 0 and its

Time-Stamp field shall be used to estimate the clock offset between the

transmitting node and the receiving node;

• the second record shall have the Sequence Number (SN) set to 1 and its

Time-Stamp field shall be used to estimate the time passed since

previous transmission;

• the third record shall have the Sequence Number (SN) set to 2 and its

Time-Stamp field shall be used to estimate the time passed since

previous transmission.

It is important to note that passing through Traffic Policing validates the correct

application of the Token Bucket algorithm at the receiving end for channel 1 for

the same reasons detailed in previous section for node CPM1.

6.6.3 Test case illustrated

The test case devised for validating the concept of “channel” is illustrated in

Figure 6.3:

136

Figure 6.3 – Test case for validating the “channel” concept.

6.6.4 Configurarion files

The Figure 6.4 shows the XML configuration files for nodes CPM1 and CPM2,

whose values were used for fulfilling the in-memory data structures for the test

case:

Figure 6.4 – XML configuration files for nodes CPM1 (left) and CPM2 (right).

137

6.6.5 Implementation details

The applications emulating the behavior of nodes CPM1 and CPM2 were

developed in C language as console applications for the Microsoft Windows

10TM operating system using an Intel i3-7100TM CPU (@3.90GHz) with 8

gigabytes of memory.

The code for implementing the Token Bucket algorithm in Traffic Shaping for

the SEND operation and in Traffic Policing for the RECEIVE operation was

adapted from Thomas (2007). The code used for calculating the CRC12 for the

UI PDU extended header and the extra CRC32 for the UI PDU payload was

adapted from Reifegerste (2003).

Firstly the CPM1 Application was run, then an arbitrary number of seconds later

the CPM2 application was run.

This test procedure has direct effect of the outputs provided by the applications,

which are shown and commented in the next sections.

6.6.6 CPM1 application source code (extract)

The text below is an extract of the source code for the CPM1 application (the

full text is provided in Appendix E). The function calls to the “channel” services

are highlighted:

int main()

{

// calling "initialize()" not needed in real life..

 retcode = initialize();

 printf("\n\n>> Entering main()...");

 printf("\n>> Registering CPM1 to SAP %d", cpm1_SAP);

 retcode = REGISTER(cpm1_SAP, &cpm1_SIB);

 if(retcode == SUCCESS)

 {

 printf("\n\n>> CPM1 SAP %d is now registered to PID = 0x%x",

 cpm1_SIB->sap,

 cpm1_SIB->pid);

 } else

 {

 printf("\n>> bad code 0x%x", retcode);

 }

 printf("\n>> Opening channel ID %d for access 0x%x", cpm1_chn, cpm1_acc);

 retcode = OPEN(cpm1_chn, cpm1_acc, &cpm1_CCB);

 if(retcode == SUCCESS)

 {

 printf("\n\n>> Channel ID %d is now open",

138

 cpm1_CCB->chnid);

 } else

 {

 printf("\n>> bad code 0x%x", retcode);

 }

 for(i = 0; i<MINBYTES; i++)

 {

 message[i] = i+1;

 }

 msize = strlen(message);

 length = (int)msize;

 printf("\n\n>> Sending message with %d bytes", length);

 retcode = SEND(&cpm1_CCB, message, length, &xmited);

 printf("\n return code 0x%x, tokens = %d", retcode, cpm1_CCB->tokens);

 sleep(3);

 printf("\n\n>> Sending message with %d bytes", length);

 retcode = SEND(&cpm1_CCB, message, length, &xmited);

 printf("\n return code 0x%x, tokens = %d", retcode, cpm1_CCB->tokens);

 sleep(1);

 printf("\n\n>> Sending message with %d bytes", length);

 retcode = SEND(&cpm1_CCB, message, length, &xmited);

 printf("\n return code 0x%x, tokens = %d", retcode, cpm1_CCB->tokens);

 retcode = STATUS(cpm1_chn, &chn_ssap, &chn_dsap, &chn_capacity, &chn_tokens,

 &chn_rate, &chn_pid, &chn_sn, &chn_timestmp);

 printf("\n\n>> Status of channel ID = %d, SSAP = %d, DSAP = %d,

 Token Bucket capacity/tokens/rate [in bytes/sec] = %d/%d/%d,

 PID = %x, SN = %d, Time-stamp = %d",

 cpm1_chn,

 chn_ssap,

 chn_dsap,

 chn_capacity,

 chn_tokens,

 chn_rate,

 chn_pid,

 chn_sn,

 chn_timestmp);

 printf("\n\n>> Closing channel ID %d", cpm1_chn);

 retcode = CLOSE(&cpm1_CCB);

 if(retcode == SUCCESS)

 {

 printf("\n\n>> Channel ID %d is now closed",

 cpm1_CCB->chnid);

 } else

 {

 printf("\n>> bad code 0x%x", retcode);

 }

 printf("\n\n>> Unregistering SAP %d from CPM1", cpm1_SAP);

 retcode = UNREGISTER(&cpm1_SIB);

 if(retcode == SUCCESS)

 {

139

 printf("\n\n>> CPM1 SAP %d is now unregistered (PID = 0x%x)",

 cpm1_SIB->sap,

 cpm1_SIB->pid);

 } else

 {

 printf("\n>> bad code 0x%x", retcode);

 }

 return 0;

}

The call to the function initialize() is not needed in a production code, but

it is necessary to the CPM1 application for initializing the in-memory data

structures (see Section 5.4.2) specified for the test case.

6.6.7 CPM1 application output commented

The text output of the CPM1 application is shown in the next sections followed

by comments explaining how it validates the expected results listed in the

previous Section 6.4.1.

6.6.7.1 Initialization

>> Filling NIBs and CIB...

>> Number of nodes 2

>> Node name 'CPM1 ' Equipment ID = 0x341 Unit = 1 MAC Base = aa000503

 41100000

>> Node name 'CPM2 ' Equipment ID = 0x341 Unit = 2 MAC Base = aa000503

 41200000

>> Configuration name 'TEST001' Host NIB address = 62fcc0

 Host name from NIB List 'CPM1 ' Host name from CIB 'CPM1 '

>> Filling CCBs and SIBs...

>> Number of channels 1

>> Channel position 0, ID = 1, SSAP = 114, DSAP = 116,

 Token Bucket capacity/tokens/rate [in bytes/sec] = 90/60/30,

 PID = 0, SN = 0, Time-stamp = 0

>> Service position 0, SAP = 114, PID = 0

>> Filling SHBs...

>> Number of hosted services 1

>> Hosted service position 0, SAP = 116, Host name from NIB 'CPM2 '

>> Filling PABs and PAB List...

>> Port 1: hops = 0 to node 'CPM2 ' from NIB

...NIBs From PAB List...

>> Port 1: hops = 0 to node 'CPM2 '

>> Filling CBB...

>> Configuration name 'TEST001' Host name from CIB 'CPM1 '

>> End of initialize()...

Firstly, the Node Identification Blocks (NIB) for the two nodes are filled. Next,

the Configuration Identification Block (CIB) is filled with the configuration name

140

‘TEST001’ and the first NIB pointing to the host node CPM1. The code correctly

retrieves the name ‘CPM1’ after parsing the CIB.

The Channel Control Block List (CCBL) is filled with just one Channel Control

Block (CCB) entry pointing to only one channel with “ID = 1” with SSAP 114 and

DSAP 116, token bucket parameters capacity/tokens/rate set to 90/60/30 and

the code correctly shows a PID (process identification), Sequence Number and

Timestamp all set to zero (the PID shall be altered by the OPEN function call).

The Service Identification Block List (SIBL) is filled with just one Service

Identification Block (SIB) for SAP 114 and the code correctly shows a zeroed

PID (the PID shall be altered by the REGISTER function call).

The Service Hosting Block List (SHBL) is filled with just one service and node

combination, correctly indicating the node name ‘CPM2’ as host of SAP 116

after parsing the NIB.

A Port Assignment Block (PAB) is filled for port number 1 and “hops = 0”

pointing to the NIB built for node CPM2 and inserted in the Port Assignment

Block List (PABL). The code correctly shows node name ‘CPM2’ after parsing

the PABL.

Finally, the Configuration Base Block (CBB) is filled and the code correctly

shows the configuration name ‘TEST001’ and the host node name ‘CPM1’ after

parsing the CIB.

6.6.7.2 REGISTER and OPEN function calls

>> Registering CPM1 to SAP 114

[REGISTER] Service position 0, SAP = 114, PID = 0x0

[REGISTER] SAP 114 is now registered to PID = 0xcc1 at SIB address 0x40ab04

>> CPM1 SAP 114 is now registered to PID = 0xcc1

>> Opening channel ID 1 for access 0x10000051

[OPEN] channel ID 1 is now opened to PID = 0xcc1

>> Channel ID 1 is now open

The code shows the status of the CCB prior to the REGISTER function call

correctly showing a PID field set to zero for SAP 114. After calling REGISTER,

the PID of application CPM1 is copied into the SIB. The REGISTER function

would have failed if the PID field of the CCB were non-zero, indicating that the

service had been previously registered.

141

CPM1 application has to call the OPEN function for getting “SEND access”

(indicated by the hex code 0x10000051) to channel ‘1’. The OPEN function

checks whether node CPM1 holding SAP 114 is listed as SSAP in channel ‘1’,

otherwise OPEN will fail. The OPEN function would have failed if the PID field in

the CCB were non-zero, indicating that the channel had been previously

opened.

6.6.7.3 SEND function calls

CPM1 calls SEND function three times, each one for sending a message of size

34 bytes over channel ‘1’.

Sending the first message goes as follows.

>> Sending message with 34 bytes

[SEND] Calling LLC_SEND

 magic number = 0xa1b2c3d4

 major version number = 2

 minor version number = 4

 GMT to local correction = -3

 accuracy of timestamps = 0

 max length of captured packets,in octets = 65535

 data link type = 1

[LLC_SEND] bytes written 24 for new PCAP file header

 tokens available = 60

 tokens left = 0 (bytes sent + LLCE header)

 timestamp seconds = 1606821301 (0x5fc625b5)

 timestamp microseconds = 200500 (0x30f34)

 number of octets of packet to be saved in file = 60 (0x3c)

 actual length of packet = 60 (0x3c)

[LLC_SEND] bytes written 16 for new PCAP record header

 Host for service SAP = 116 has MAC 0xaa000503 41200000

[LLC_SEND} Port 1: hops = 0 to node 'CPM2' from PAB list and from SHB 'CPM2'

 Source MAC= aa 0 5 3 41 11

 Destination MAC = aa 0 5 3 41 20

 UI length in network byte order = 0x2e00

 DSAP = 0x74

 SSAP = 0x72

 CTRL = 0x3

 SN = 0x0

 time stamp is seconds after midnight 29701

 UI time stamp = 0x7405

 UI CRC12 = 0xf8c

 Extended header = 0x7 40 5f 8c in network order

 UI CRC32 = 0x840feafa

[LLC_SEND] Channel ID = 1, SSAP = 114, DSAP = 116, capacity = 90, tokens = 0,

 rate = 30 bytes/sec, PID = 0xcc1, SN = 0, Time-stamp = 29701

[LLC_SEND] bytes written 60 for new PCAP record data

[LLC_SEND] length = 34, xmited = 34

 return code 0x10000001, tokens = 0

142

The SEND function validates whether the CCB pointed to by the first argument

holds a PID matching the calling process and whether the number of bytes to

be sent is valid (minimum 34 and maximum 1492 bytes).

Once arguments are validated, SEND calls LLC_SEND that effectively builds

the network data frame for passing it to the Physical Layer. LLC_SEND is

implemented in User Mode code, but in a production environment it would

execute in Protected (or Kernel) Mode.

When called for the first time, LLC_SEND opens a PCAP file and write its 24

byte file header, including the type of network being monitored (Ethernet has a

“data link type” of “1”) and other information.

LLC_SEND then performs Traffic Shaping and checks whether the tokens

remaining are sufficient for transmitting the 34-byte long message plus another

26 bytes of the IEEE 802.3 (14 bytes), the extended IEEE 802.2 LLC (8 bytes)

headers and the extra CRC32 field (4 bytes).

Each network frame written to a PCAP file has a 16 byte record header,

including a time stamp in seconds and microseconds and the length of the

captured frame in bytes.

The individual fields of the IEEE 802.3 and of the extended IEEE 802.2 LLC

headers are correctly listed:

• For finding which network node hosts DSAP 116 of channel ‘1’,

LLC_SEND has to search the Service Hosting Block (SHB) for this

particular SAP number to find the associated NIB, which points to node

CPM2;

• For assembling the MAC Source address, LLC_SEND has to search the

Port Assignment Block List (PABL) looking for a Port Assignment Block

that points to the NIB describing the destination node CPM2. The Port

Number (‘1’ in this case) is the lowest 4-bit nibble of the IEEE 802.3 MAC

Source Address and Unit Number the next high-order 4-bit nibble (‘1’ in

this case).

LLC_SEND writes a record to the PACP file containing the network data frame

of length 60 bytes and reports 34 bytes transmitted to the CPM1 application.

143

Before writing, LLC_SEND calculates the CRC12 for the UI PDU extended

header and the extra CRC32 for the UI PDU payload and inserts them in the

proper positions.

The calculated CRC12 is different for each UI PDU, since it includes in its

calculation a different value for the Time-Stamp field. The extra CRC32 has

always the same value (0x840FEAFA), since the data inserted in the payload

data field of the UI PDU is always the same (a sequence of 34 values from 0x01

to 0x22). The CRC32 value for this simple data sequence was previously

verified using an open-source application (REIFEGERSTE, 2003).

The contents of the CCB are also correctly listed after the LLC_SEND

operation, the return code indicates success (hex code 0x10000001) and the

remaining number of tokens is correctly indicated (0) after sending 60 bytes.

Sending a second message of 34 bytes follows the same path.

>> Sending message with 34 bytes

[SEND] Calling LLC_SEND

 tokens available = 90

 tokens left = 30 (bytes sent + LLCE header)

 timestamp seconds = 1606821304 (0x5fc625b8)

 timestamp microseconds = 231280 (0x38770)

 number of octets of packet to be saved in file = 60 (0x3c)

 actual length of packet = 60 (0x3c)

[LLC_SEND] bytes written 16 for new PCAP record header

 Host for service SAP = 116 has MAC 0xaa000503 41200000

[LLC_SEND} Port 1: hops = 0 to node 'CPM2' from PAB list and from SHB 'CPM2'

 Source MAC= aa 0 5 3 41 11

 Destination MAC = aa 0 5 3 41 20

 UI length in network byte order = 0x2e00

 DSAP = 0x74

 SSAP = 0x72

 CTRL = 0x3

 SN = 0x1

 time stamp is microseconds after second 231280

 UI time stamp = 0x38770

 UI CRC12 = 0x8b3

 Extended header = 0x38 77 8 b3 in network order

 UI CRC32 = 0x840feafa

[LLC_SEND] Channel ID = 1, SSAP = 114, DSAP = 116, capacity = 90, tokens = 30,

 rate = 30 bytes/sec, PID = 0xcc1, SN = 1, Time-stamp = 231280

[LLC_SEND] bytes written 60 for new PCAP record data

[LLC_SEND] length = 34, xmited = 34

 return code 0x10000001, tokens = 30

It is important to note that the Traffic Shaping worked properly, starting with a

balance of 0 tokens, allowing sending 60 bytes and leaving a balance of 30

tokens after 3 seconds from the first SEND operation.

144

Sending a third message of 34 bytes after 1 second from the last SEND

operation confirms the proper behavior of Traffic Shaping.

>> Sending message with 34 bytes

[SEND] Calling LLC_SEND

 tokens available = 60

 tokens left = 0 (bytes sent + LLCE header)

 timestamp seconds = 1606821305 (0x5fc625b9)

 timestamp microseconds = 246672 (0x3c390)

 number of octets of packet to be saved in file = 60 (0x3c)

 actual length of packet = 60 (0x3c)

[LLC_SEND] bytes written 16 for new PCAP record header

 Host for service SAP = 116 has MAC 0xaa000503 41200000

[LLC_SEND} Port 1: hops = 0 to node 'CPM2 ' from PAB list and from SHB 'CPM2

'

 Source MAC= aa 0 5 3 41 11

 Destination MAC = aa 0 5 3 41 20

 UI length in network byte order = 0x2e00

 DSAP = 0x74

 SSAP = 0x72

 CTRL = 0x3

 SN = 0x2

 time stamp is microseconds after second 246672

 UI time stamp = 0x3c390

 UI CRC12 = 0xd6c

 Extended header = 0x3c 39 d 6c in network order

 UI CRC32 = 0x840feafa

[LLC_SEND] Channel ID = 1, SSAP = 114, DSAP = 116, capacity = 90, tokens = 0,

rate = 30 bytes/sec, PID = 0xcc1, SN = 2, Time-stamp = 246672

[LLC_SEND] bytes written 60 for new PCAP record data

[LLC_SEND] length = 34, xmited = 34

 return code 0x10000001, tokens = 0

The token balance starts with 30 tokens, then 30 tokens are added after 1

second passed, and ending with a balance of 0 tokens after sending 60 bytes.

6.6.7.4 STATUS function call

>> Status of channel ID = 1, SSAP = 114, DSAP = 116,

 Token Bucket capacity/tokens/rate [in bytes/sec] = 90/0/30, PID = cc1,

 SN = 2, Time-stamp = 246672

After sending three messages over channel ‘1’, the STATUS function call

correctly returns the token balance (0), which PID owns the channel, the last

Sequence Number (2) and the last Time Stamp (246672 microseconds).

6.6.7.5 CLOSE and UNREGISTER function calls

>> Closing channel ID 1

[CLOSE] channel ID 1 is now closed, PID = 0x0

>> Channel ID 1 is now closed

>> Unregistering SAP 114 from CPM1

[UNREGISTER] Service position 0, SAP = 114, PID = 0xcc1

145

[UNREGISTER] SAP 114 is now unregistered, PID = 0x0

>> CPM1 SAP 114 is now unregistered (PID = 0x0)

Calling the CLOSE function forces the PID in the CCB to be cleared. The same

applies to the PID in the SIB when calling the UNREGISTER function. Both

functions verify whether the PID of the calling process matches the PID in the

CCB and in the SIB.

6.6.8 CPM2 application source code (extract)

The text below is an extract of the source code for the CPM2 application (the

full text is provided in Appendix E). The function calls to the “channel” services

are highlighted:

int main()

{

// calling "initialize()" not needed in real life..

 retcode = initialize();

 printf("\n\n>> Entering main()...");

 printf("\n>> Registering CPM1 to SAP %d", cpm2_SAP);

 retcode = REGISTER(cpm2_SAP, &cpm2_SIB);

 if(retcode == SUCCESS)

 {

 printf("\n\n>> CPM2 SAP %d is now registered to PID = 0x%x",

 cpm2_SIB->sap,

 cpm2_SIB->pid);

 } else

 {

 printf("\n>> bad code 0x%x", retcode);

 }

 printf("\n>> Opening channel ID %d for access 0x%x", cpm2_chn, cpm2_acc);

 retcode = OPEN(cpm2_chn, cpm2_acc, &cpm2_CCB);

 if(retcode == SUCCESS)

 {

 printf("\n\n>> Channel ID %d is now open",

 cpm2_CCB->chnid);

 } else

 {

 printf("\n>> bad code 0x%x", retcode);

 }

 msize = strlen(message);

 length = (int)msize;

 printf("\n\n>> Receiving message with %d bytes", length);

 gettimeofday(&prvTime, NULL);

 retcode = RECEIVE(&cpm2_CCB, message, length, &receivd);

 printf("\n return code 0x%x, tokens = %d", retcode, cpm2_CCB->tokens);

 printf("\n\n>> Receiving message with %d bytes", length);

146

 nanoTime.tv_nsec = 0;

 nanoTime.tv_sec = 3;

 nanosleep(&nanoTime, (struct timespec *)NULL);

 retcode = RECEIVE(&cpm2_CCB, message, length, &receivd);

 printf("\n return code 0x%x, tokens = %d", retcode, cpm2_CCB->tokens);

 printf("\n\n>> Receiving message with %d bytes", length);

 nanoTime.tv_nsec = 0;

 nanoTime.tv_sec = 1;

 nanosleep(&nanoTime, (struct timespec *)NULL);

 retcode = RECEIVE(&cpm2_CCB, message, length, &receivd);

 printf("\n return code 0x%x, tokens = %d", retcode, cpm2_CCB->tokens);

 retcode = STATUS(cpm2_chn, &chn_ssap, &chn_dsap, &chn_capacity, &chn_tokens,

 &chn_rate, &chn_pid, &chn_sn, &chn_timestmp);

 printf("\n\n>> Status of channel ID = %d, SSAP = %d, DSAP = %d, Token Bucket

capacity/tokens/rate [in bytes/sec] = %d/%d/%d, PID = %x, SN = %d, Time-stamp

= %d",

 cpm2_chn,

 chn_ssap,

 chn_dsap,

 chn_capacity,

 chn_tokens,

 chn_rate,

 chn_pid,

 chn_sn,

 chn_timestmp);

 printf("\n\n>> Closing channel ID %d", cpm2_chn);

 retcode = CLOSE(&cpm2_CCB);

 if(retcode == SUCCESS)

 {

 printf("\n\n>> Channel ID %d is now closed",

 cpm2_CCB->chnid);

 } else

 {

 printf("\n>> bad code 0x%x", retcode);

 }

 printf("\n\n>> Unregistering SAP %d from CPM2", cpm2_SAP);

 retcode = UNREGISTER(&cpm2_SIB);

 if(retcode == SUCCESS)

 {

 printf("\n\n>> CPM2 SAP %d is now unregistered (PID = 0x%x)",

 cpm2_SIB->sap,

 cpm2_SIB->pid);

 } else

 {

 printf("\n>> bad code 0x%x", retcode);

 }

 return 0;

}

147

As for the CPM1 application, the call to the function initialize() is not

needed in a production code, but it is necessary to the CPM2 application for

initializing the in-memory data structures (see Section 5.4.2) specified for the

test scenario

6.6.9 CPM2 application output commented

The text output of the CPM2 application is shown in the next sections followed

by comments explaining how it validates the expected results listed in the

previous Section 6.4.2.

6.6.9.1 Initialization

>> Filling NIBs and CIB...

>> Number of nodes 2

>> Node name 'CPM2 ' Equipment ID = 0x341 Unit = 2 MAC Base = aa000503

41200000

>> Node name 'CPM1 ' Equipment ID = 0x341 Unit = 1 MAC Base = aa000503

41100000

>> Configuration name 'TEST001' Host NIB address = 63fc90 Host name from NIB

List 'CPM2 ' Host name from CIB 'CPM2 '

>> Filling CCBs and SIBs...

>> Number of channels 1

>> Channel position 0, ID = 1, SSAP = 114, DSAP = 116,

 Token Bucket capacity/tokens/rate [in bytes/sec] = 90/60/30,

 PID = 0, SN = 0, Time-stamp = 0

>> Service position 0, SAP = 116, PID = 0

>> Filling SHBs...

>> Number of hosted services 1

>> Hosted service position 0, SAP = 114, Host name from NIB 'CPM1 '

>> Filling PABs and PAB List...

>> Port 1: hops = 0 to node 'CPM1 ' from NIB

...NIBs From PAB List...

>> Port 1: hops = 0 to node 'CPM1 '

>> Filling CBB...

>> Configuration name 'TEST001' Host name from CIB 'CPM2 '

>> End of initialize()...

As for the CPM1 application, the Node Identification Blocks (NIB) for the two

nodes are filled, then the Configuration Identification Block (CIB) is filled with

the configuration name ‘TEST001’ and the first NIB pointing to the host node

CPM2. The code correctly retrieves the name ‘CPM2’ after parsing the CIB.

The Channel Control Block List (CCBL) is filled with the same values as for

CPM1 appplication, since they both share the same channel ‘1’.

148

The Service Identification Block List (SIBL) is filled with just one Service

Identification Block (SIB) for SAP 116 and the code correctly shows a zeroed

PID (the PID shall be altered by the REGISTER function call).

The Service Hosting Block List (SHBL) is filled with just one service and node

combination, correctly indicating the node name ‘CPM1’ as host of SAP 114

after parsing the NIB.

A Port Assignment Block (PAB) is filled for port number 1 and “hops = 0”

pointing to the NIB built for node CPM1 and inserted in the Port Assignment

Block List (PABL). The code correctly shows node name ‘CPM1’ after parsing

the PABL.

Lastly, the Configuration Base Block (CBB) is filled and the code correctly

shows the configuration name ‘TEST001’and the host name ‘CPM2’ after

parsing the CIB.

6.6.9.2 REGISTER and OPEN function calls

>> Registering CPM2 to SAP 116

[REGISTER] Service position 0, SAP = 116, PID = 0x0

[REGISTER] SAP 116 is now registered to PID = 0xcc2 at SIB address 0x411c04

>> CPM2 SAP 116 is now registered to PID = 0xcc2

>> Opening channel ID 1 for access 0x10000053

[OPEN] channel ID 1 is now opened to PID = 0xcc2

>> Channel ID 1 is now open

The code shows the status of the CCB prior to the REGISTER function call

correctly showing a PID field set to zero for SAP 116. After calling REGISTER,

the PID of application CPM2 is copied into the SIB. The REGISTER function

would have failed if the PID field of the CCB were non-zero, indicating that the

service had been previously registered.

CPM2 application has to call the OPEN function for getting “RECEIVE access”

(indicated by the hex code 0x10000053) to channel ‘1’. The OPEN function

checks whether node CPM2 holding SAP 116 is listed as DSAP in channel ‘1’,

otherwise OPEN will fail. The OPEN function would have failed if the PID field in

the CCB were non-zero, indicating that the channel had been previously

opened.

149

6.6.9.3 RECEIVE function calls

CPM2 calls RECEIVE function three times, each one for receiving a message of

size 34 bytes over channel ‘1’.

>> Receiving message with 34 bytes

 [RECEIVE] Calling LLC_RECEIVE

[LLC_RECEIVE] bytes read 24 for PCAP file header

 magic number = 0xa1b2c3d4

 major version number = 2

 minor version number = 4

 GMT to local correction = -3

 accuracy of timestamps = 0

 max length of captured packets,in octets = 65535

 data link type = 1

 tokens available = 60

 tokens left = 0 (bytes sent + LLCE header)

[LLC_RECEIVE] bytes read 16 from PCAP record header

 timestamp seconds = 1606821301 (0x5fc625b5)

 timestamp microseconds = 200500 (0x30f34)

 number of octets of packet saved in file = 60 (0x3c)

 actual length of packet = 60 (0x3c)

[LLC_RECEIVE] bytes read 60 from PCAP record data

 Source MAC= aa 0 5 3 41 11

 Destination MAC = aa 0 5 3 41 20

 UI length = 0x2e

 UI CRC12 = 0xf8c

 UI CRC32 = 0x840feafa

 DSAP = 0x74

 SSAP = 0x72

 CTRL = 0x3

 SN = 0x0

 Extended header = 0x7 40 5f 8c in network order

 UI time stamp = 29701 (0x7405)

 time stamp is seconds after midnight (apparent offset to remote clock =

120 +ahead/-behind)

[LLC_RECEIVE] length = 34, received = 34

 return code 0x10000001, tokens = 0

The RECEIVE function validates whether the CCB pointed to by the first

argument holds a PID matching the calling process and whether the number of

bytes to be received is valid (minimum 34 and maximum 1492 bytes).

Once arguments are validated, RECEIVE calls LLC_RECEIVE that has to wait

for the Physical Layer to pass a received network data frame with a Destination

MAC address matching the one for node CPM2. In this test case,

LLC_RECEIVE will simply open the PCAP file recorded by CPM1 application

and process its contents.

When called for the first time, LLC_RECEIVE opens the PCAP file and reads its

24 byte file header. The code correctly lists the PCAP file header contents.

150

LLC_RECEIVE then performs Traffic Policing and checks whether the tokens

remaining are sufficient for receiving the 34-byte long message plus another 26

bytes of the IEEE 802.3 (14 bytes), the extended IEEE 802.2 LLC (8 bytes)

headers and the extra CRC32 field (4 bytes), a total of 60 bytes.

LLC_RECEIVE reads the first record of the PCAP file and correctly displays its

contents, including the total frame length (60 bytes or hexadecimal 0x3C).

LLC_RECEIVE also validates the CRC12 for the UI PU extended header and

the CRC32 for the UI PDU payload (an error condition would have been raised

in case of CRC mismatch).

LLC_RECEIVE validates that the received network frame is destined to channel

‘1’ by examining the DSAP and SSAP against the CCB for this channel in the

CCBL structure. The code correctly lists the fields of the IEEE 802.3 and the

extended IEEE 802.2 headers.

The contents of the CCB are also correctly listed after the LLC_RECEIVE

operation, the return code indicates success (hex code 0x10000001) and the

remaining number of tokens is correctly indicated (0) after receiving 60 bytes.

Since the first network frame has Sequence Number 0 and carries a Time

Stamp with the number of seconds passed after midnight, LLC_RECEIVE can

estimate a time offset between the remote clock at CPM1 and the local clock at

CPM2 by calculating the difference between the number of seconds passed

after midnight locally and the received time stamp.

After the first call to RECEIVE, the CPM2 application waits 3 seconds before

calling RECEIVE again.

>> Receiving message with 34 bytes

[RECEIVE] Calling LLC_RECEIVE

 tokens available = 90

 tokens left = 30 (bytes sent + LLCE header)

[LLC_RECEIVE] bytes read 16 from PCAP record header

 timestamp seconds = 1606821304 (0x5fc625b8)

 timestamp microseconds = 231280 (0x38770)

 number of octets of packet saved in file = 60 (0x3c)

 actual length of packet = 60 (0x3c)

[LLC_RECEIVE] bytes read 60 from PCAP record data

 Source MAC= aa 0 5 3 41 11

 Destination MAC = aa 0 5 3 41 20

 UI length = 0x2e

 UI CRC12 = 0x8b3

 UI CRC32 = 0x840feafa

151

 DSAP = 0x74

 SSAP = 0x72

 CTRL = 0x3

 SN = 0x1

 Extended header = 0x38 77 8 b3 in network order

 UI time stamp = 231280 (0x38770)

 delta time in seconds for traffic policing = 3.015157

[LLC_RECEIVE] length = 34, received = 34

 return code 0x10000001, tokens = 30

Receiving a second message of 34 bytes follows the same path.

The code also displays the number of microseconds passed since the last call

to LLC_RECEIVE used by the Traffic Policing.

The Traffic Policing worked properly, starting with a balance of 90 tokens after 3

seconds passed from the first RECEIVE operation, receiving 60 bytes and

leaving a balance of 30 tokens.

After the second call to RECEIVE, the CPM2 application waits 1 second before

calling RECEIVE again.

>> Receiving message with 34 bytes

[RECEIVE] Calling LLC_RECEIVE

 tokens available = 60

 tokens left = 0 (bytes sent + LLCE header)

[LLC_RECEIVE] bytes read 16 from PCAP record header

 timestamp seconds = 1606821305 (0x5fc625b9)

 timestamp microseconds = 246672 (0x3c390)

 number of octets of packet saved in file = 60 (0x3c)

 actual length of packet = 60 (0x3c)

[LLC_RECEIVE] bytes read 60 from PCAP record data

 Source MAC= aa 0 5 3 41 11

 Destination MAC = aa 0 5 3 41 20

 UI length = 0x2e

 UI CRC12 = 0xd6c

 UI CRC32 = 0x840feafa

 DSAP = 0x74

 SSAP = 0x72

 CTRL = 0x3

 SN = 0x2

 Extended header = 0x3c 39 d 6c in network order

 UI time stamp = 246672 (0x3c390)

 delta time in seconds for traffic policing = 1.015389

 estimated delta time in seconds at origin = 1.015392

[LLC_RECEIVE] length = 34, received = 34

 return code 0x10000001, tokens = 0

Since the Time Stamp carried by the third received frame has the number of

microseconds passed after the second, LLC_RECEIVE can estimate the time

interval taken by the transmitting party, CPM1, before transmitting the third

message.

152

Traffic Policing worked properly, starting with a balance of 30 tokens, adding

another 30 tokens after passing 1 second from the last RECEIVE operation,

receiving 60 bytes and leaving a balance of 0.

6.6.9.4 STATUS function call

>> Status of channel ID = 1, SSAP = 114, DSAP = 116,

 Token Bucket capacity/tokens/rate [in bytes/sec] = 90/0/30, PID = cc2,

 SN = 2, Time-stamp = 246672

After receiving three messages over channel ‘1’, the STATUS function call

correctly returns the token balance (0), which PID owns the channel, the last

Sequence Number (2) and the last Time Stamp.

6.6.9.5 CLOSE and UNREGISTER function calls

>> Closing channel ID 1

[CLOSE] channel ID 1 is now closed, PID = 0x0

>> Channel ID 1 is now closed

>> Unregistering SAP 116 from CPM2

[UNREGISTER] Service position 0, SAP = 116, PID = 0xcc2

[UNREGISTER] SAP 116 is now unregistered, PID = 0x0

>> CPM2 SAP 116 is now unregistered (PID = 0x0)

Calling the CLOSE function forces the PID in the CCB to be cleared. The same

applies to the PID in the SIB when calling the UNREGISTER function. Both

functions verify whether the PID of the calling process matches the PID in the

CCB and in the SIB.

6.6.10 Frame validation using wireshark generic dissector

The Wireshark tool (WSDG, 2020) can be configured for parsing records written

to PCAP files by any Ethernet-based protocol such as the new Data Link Layer

protocol.

More details in how to configure Wireshark are provided in Appendix B.

For the test case, it is relevant to show that Wireshark correctly displays the

contents of the 3 records written the CPM1 application to a PCAP file.

The next figures are copies of the Wireshark screen, one for each record read.

153

The important data for verifying the correctness of the network frame structure

are the correct identification of the IEEE 802.3 header fields, namely the

Destination and Source MAC addresses and the Length, and the extended

IEEE 802.2 LLC fields, namely the DSAP, the SSAP, the Control for UI PDU

(0x03), the Sequence Number, the Time-Stamp and the header CRC12.

The extra CRC32 at the end of the LLC payload also reads correctly

(0x840FEAFA) at the last 4 bytes of the “end-of-msg” field.

154

6.6.10.1 First record: UI PDU sequence number 0

The first captured frame has a SN of 0 and carries a time stamp of 29701

seconds passed after midnight, which is in line with the record header’s “Arrival

Time” at 08:15:01 (29701 = 8x3600 + 15x60 + 1).

Figure 6.5 – Wireshark screen for first record with SN = 0.

155

6.6.10.2 Second record: UI PDU sequence number 1

The second captured frame has a SN of 1 and carries a time stamp of 231208

microseconds after the second, the same time stamp inserted in the PCAP

record header.

Wireshark also displays a “Time delta from previous captured frame” of

3.030780 seconds, the difference between the current and previous “Epoch

Time” (seconds and nanoseconds after January 1st 1970), and close enough to

the 3 seconds time interval passed after the first SEND operation.

Figure 6.6 – Wireshark screen for first record with SN = 1.

156

6.6.10.3 Third record: UI PDU sequence number 2

The second captured frame has a SN of 2 and carries a time stamp of 246672

microseconds after the second, the same time stamp inserted in the PCAP

record header.

Wireshark also displays a “Time delta from previous captured frame” of

1.015392 seconds, the difference between the current and previous “Epoch

Time”, close enough to the 1 second time interval passed after second SEND

operation.

Figure 6.7 – Wireshark screen for first record with SN = 2.

157

6.7 Summary

The evidences showing that the test case in Sections 6.2 to 6.6 completed the

objectives listed in Section 6.1 are:

• The collection of structures implemented in C Language allowed the

“channel” API calls to correctly retrieve the necessary data for performing

its function as designed, validating the in-memory structures described in

Section 5.4.2;

• The sequence of “channel” API function calls correctly produced and

consumed the simulated data as designed, validating the programming

interface described in Section 5.4.3;

• The Wireshark correctly displayed the contents of the network data frame

recorded in PCAP format at the MAC layer, according to IEEE 802.3, at

the standard LLC layer, according to IEEE 802.2, and at the extended

LLC layer, validating the format of the data frame built, as described in

Section 5.1;

• Sending and receiving three network data frames separated by irregular

time intervals validated the implementation of Traffic Shaping at the

“producer” node (CPM1) and Traffic Policing at the “consumer” node

(CPM2), as described in Sections 5.2.3 and 5.2.4.

A production version of the new Data Link Layer and services shall require a

proper test suite for testing error conditions and evaluating the timing behavior

of the protocol implementation. Such investigation is beyond the scope of this

work and is left as a suggestion for future work.

158

159

7 CONCLUSIONS, CONTRIBUTIONS AND SUGGESTIONS

7.1 Conclusions

Seeking to fill a gap in existing network protocols, this work introduced a new,

IEEE 802.2 Logical Layer Control (LLC) extended protocol to the IEEE 802.3

Data Link Layer protocol, and an associated software interface targeting the

reduction the number of protocol layers required to connect a “data producer”

process to a “data consumer” process over the network infrastructure.

A virtual entity called “channel” was introduced as the means of achieving this

goal.

A software Application Programming Interface (API) accessible through the

higher Application Layer was introduced, allowing portability across different

software implementations of the channel.

Flow control services, namely Traffic Shaping and Traffic Policing, were

introduced as an integral part of the system services involved in sending and

receiving data over a channel, thus protecting an application from an occasional

malfunction of another application.

The proposed test case was sufficient for validating the in-memory data

structures that support the implementation of the protocol and the access to it

over the channel API. The test case also demonstrated the correct behavior of

the Traffic Policing and the Traffic Shaping services, by allowing sending and

receiving messages separated by irregular, yet constrained, time intervals.

The timing information added to the IEEE 802.2 original Unnumbered

Information (UI) of the “Type 1” Portable Data Unit (PDU) network data frames

was proven useful for estimating the timing regularity of the “data producer” by

the “data consumer”, even considering that, due to the limitations of the platform

used for the test case implementation, the time intervals for validating Traffic

Shaping and Policing were specified in seconds. In a production environment it

would be typical to have time intervals specified in milliseconds.

The additional network data frame integrity was verified by validating

calculations of the CRC12 for the extended IEEE 802.2 UI PDU header and of

160

the CRC32 for the user data by using an open-source application accessible via

the Internet (REIFEGERSTE, 2003).

The results obtained so far are very encouraging and suggest that the proposed

protocol and the associated software interface can play an important role in

communications supporting complex distributed systems installed in aerospace

vehicles.

Implementing route validation and testing it in a mixed network topology are left

to a future study, because essential resources were not available to this work,

namely the access to an open-source Ethernet network card Device Driver and

a suitable laboratory environment configured with a few, multiple Ethernet port

nodes and Ethernet switches.

7.2 Summary of contributions

1) Bibliographic review of the most relevant digital communication protocols

used in aerospace applications, in particular MIL-STD-1553B, ARINC-664

Part 7 (AFDXTM) and SpaceWire;

2) Detailed review of the “Type 1” operation of the IEEE 802.2 Logical Link

Control (LLC) protocol to the IEEE 802.3 Data Link Layer protocol;

3) Introduction of a new, IEEE 802.2 LLC extended Data Link Layer protocol

for connecting data producers to data consumers executing at the

Application Layer without the need of the Transport and Network Layers

through a new concept called “channel”;

4) Introduction of a route validation protocol using IEEE 802.2 TEST Protocol

Data Units (PDU);

5) Introduction of a new method for estimating transmission delays of a

network data frame while crossing an Ethernet switch, which is simpler than

other referenced methods, allowing routing nodes to perform Traffic Policing

for protecting the network against abnormal behavior of a node (PENNA et

al., 2020); this method is briefly described in Appendix A.

7.3 Suggestions for further studies

1) To implement the “channel” API, as well as its supporting in-memory

structures, in protected mode on a suitable operating system that supports

161

real-time applications; in particular, to investigate how an underlying

operating system can handle shared access to protected memory

structures;

2) To create a small laboratory environment for testing the route validation

through the use of TEST PDUs by deploying a mixed-topology network

using single Ethernet port nodes, multiple Ethernet port nodes and Ethernet

switches;

3) Using the same laboratory, experiment with the new method of estimating

transmission delays and compare results obtained by analysis with actual

delay measurements; this experiment would require precise local clock

synchronization on each node over the entire network.

162

163

BIBLIOGRAFIC REFERENCES

ALENA, R.; OSSENFORT, J.; LAWS, K.; GOFORTH, A.; FIGUEROA, F.
Communications for integrated modular avionics. In: IEEE AEROSPACE
CONFERENCE, 2007, Big Sky, Montana. Proceedings… IEEE, 2007. DOI:
10.1109/AERO.2007.352639.

AERONAUTICAL RADIO INCORPORATED - ARINC. ARINC specification
429: mark 33 Digital Information Transfer System (DITS) – part 1 functional
description, electrical interface, label assignments and word formats. Riva
Road, Annapolis, 2001. 628p.

AERONAUTICAL RADIO INCORPORATED – ARINC. ARINC specification
653-1: avionics application software standard interface. Bowie, Maryland, 2015.
285p.

AERONAUTICAL RADIO INCORPORATED - ARINC. ARINC specification
664: aircraft data networks – part 7, deterministic networks. Riva Road,
Annapolis, 2009. 150p.

BENAMMAR, N.; RIDOUARD, F.; BAUER, H.; RICHARD, P. Forward end-to-
end delay analysis extension for FP/FIFO policy in AFDX networks. In: IEEE
INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND
FACTORY AUTOMATION (ETFA), 22., 2017. Proceedings… IEEE, 2017. P.1-
8. DOI: 10.1109/ETFA.2017.8247606.

BAUER, H. Analyze pire cas de flux hétérogenes dans un réseaux
embarqué avion. 2011. 188p. Thesis (Doctorat) - Université de Toulouse,
France, 2011.

BOSCH, R. CAN bus specification version 2.0. Stuttgart, Germany: Robert
Bosch GmbH, 1991. 73p.

BOURGUIGNON, E.; FRASELLE, S.; SCALAIS, T. Power processing unit
activities at Thales Alenia Space Belgium (ETCA). In: INTERNATIONAL
ELECTRIC PROPULSION CONFERENCE, 33., 2013, Washington-DC.
Proceedings… 2013.

CARAMIA, M. CAN @ thales - beyond ExoMars. In: ESA CAN WORKSHOP,
2016. Proceedings… 2016. Available from:
https://indico.esa.int/event/120/contributions/480/attachments/658/704/ESA-
CAN-WS-2016-TAS-I-Caramia_1.pdf. Access on: 01 feb. 2021.

CERF, V. G.; KAHN, R. E. A protocol for packet network inter-communication.
IEEE Transactions on Communicaitons, v.22, n. 5, 1974. Available from:
https://www.cs.princeton.edu/courses/archive/fall06/cos561/papers/cerf74.pdf.
Access on: 01 feb. 2021.

https://indico.esa.int/event/120/contributions/480/attachments/658/704/ESA-CAN-WS-2016-TAS-I-Caramia_1.pdf
https://indico.esa.int/event/120/contributions/480/attachments/658/704/ESA-CAN-WS-2016-TAS-I-Caramia_1.pdf
https://www.cs.princeton.edu/courses/archive/fall06/cos561/papers/cerf74.pdf

164

CERF, V.; DALA, Y.; SUNSHINE, C. Specification of internet transmission
control program. 1974. Available from: https://tools.ietf.org/html/rfc675. Access
on: 01 feb. 2021.

CISCO. Creating ethernet VLANs on catalyst switches. 2014. Available
from: https://www.cisco.com/c/pt_br/support/docs/lan-switching/vlan/10023-
3.html. Access on: 01 feb. 2021.

CISCO. How a LAN switch works. 2004. Available from:
https://www.ciscopress.com/articles/article.asp?p=357103&seqNum=4. Access
on: 01 feb. 2021.

CISCO. QoS: policing and shaping configuration guide. 2020. Available
from:
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/qos_plcshp/configuration/xe-
17/qos-plcshp-xe-17-book.html. Access on: 01 feb. 2021.

COMER, D. E. Internetworking with TCP/IP: principles, protocols, and
architecture. 2.ed. Englewood Cliffs: Prentice-Hall, 1991. 547p.

CONSULTATIVE COMMITTEE FOR SPACE DATA SYSTEMS - CCSDS,
Spacecraft Onboard Interface Services (SOIS). 2013. Available from:
https://public.ccsds.org/publications/SOIS.aspx. Access on: 01 feb. 2021.

CRUZ, R.L. A calculus for network delay: network elements in isolation. IEEE
Transaction on Information Theory, v. 37, n. 1, p. 114-131, 1991.

CRUZ, R.L. A calculus for network delay: network analysis. IEEE Transaction
on Information Theory, v. 37, n.1, p. 132-141, 1991.

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY. The history of
Arpanet: the first decade. 1981. Available from:
https://apps.dtic.mil/dtic/tr/fulltext/u2/a115440.pdf. Access on: 01 feb. 2021.

EUROPEAN AVIATION SAFTEY ADMINISTRATION - EASA. Aircraft
certification. Available from: https://www.easa.europa.eu/easa-and-
you/aircraft-products/aircraft-certification. Access on: 01 feb. 2021.

EDISON TECH CENTER. The V2 rocket - how it works, guidance. Available
from: https://www.youtube.com/watch?v=Ph-npS29n9Q. Access on: 01 feb.
2021.

ELECTRONIC INDUSTRIES ALLIANCE - EIA. RS-232-C: interface between
data terminal equipment and data communication equipment employing serial
binary data interchange. Washington, USA, 1969. 29p.

ELECTRONIC INDUSTRIES ALLIANCE - EIA. RS-485: electrical
characteristics of generators and receivers for use in balanced multipoint
systems. Washington, USA,1983. 22p.

https://tools.ietf.org/html/rfc675
https://www.cisco.com/c/pt_br/support/docs/lan-switching/vlan/10023-3.html
https://www.cisco.com/c/pt_br/support/docs/lan-switching/vlan/10023-3.html
https://www.ciscopress.com/articles/article.asp?p=357103&seqNum=4
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/qos_plcshp/configuration/xe-17/qos-plcshp-xe-17-book.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/qos_plcshp/configuration/xe-17/qos-plcshp-xe-17-book.html
https://public.ccsds.org/publications/SOIS.aspx
https://apps.dtic.mil/dtic/tr/fulltext/u2/a115440.pdf
https://www.easa.europa.eu/easa-and-you/aircraft-products/aircraft-certification
https://www.easa.europa.eu/easa-and-you/aircraft-products/aircraft-certification
https://www.youtube.com/watch?v=Ph-npS29n9Q

165

EUROPEAN COOPERATION FOR SPACE STANDARDIZATION - ECSS.
SpaceWire: links, nodes, routers and networks. Noordwijk, The Netherlands:
ECSS, 2008.

FEDERAL AVIATION ADMINISTRATIONS - FAA. Airworthiness certificates
overview. Available from:
https://www.faa.gov/aircraft/air_cert/airworthiness_certification/aw_overview/.
Access on: 01 feb. 2021.

FRANCES, F.; FRABOUL C.; GRIEU, J. Using network calculus to optimize the
AFDX network. In: ERTS, Toulouse, France, 2006. Proceedings… 2006. p. 1-
8.

FREEBSD. Essential socket functions. Available from:
https://docs.freebsd.org/en_US.ISO8859-1/books/developers-
handbook/sockets-essential-functions.html. Access on: 01 feb. 2021.

FLEXRAY. FlexRay communications system: protocol specification - version
3.0.1. [S.l.]: FlexRay Consortium, 2010. 341p.

FUCHS, C. M. The evolution of avionics networks from ARINC 429 to AFDX. In:
SEMINAR ON NETWORK ARCHITECTURES AND SERVICES, 2012.
Proceedings… 2012. p.65-76. DOI:10.2313/NET-2012-08-1_10.

GASKA, T.; WATKIN, C. B.; CHEN, Y. Integrated modular avionics - past,
present, and future. IEEE Aerospace and Electronic Systems Magazine, v.
30, n. 9, p. 12-23, 2015. DOI:10.1109/MAES.2015.150014.

GEORGES, J.-P.; DIVOUX, T.; RONDEAU, E. Confronting the perfomances of
a switched ethernet network with industrial constraints by using the network
calculus. International Journal of Communication Systems, v. 18, p. 877-
903, 2005.

GOFORTH, M.; RATLIFF, J. E.; HAMES, K. L.; VITALPUR, S. V. Avionics
architectures for exploration: building a better approach for (human) spaceflight
avionics. In: AIAA SPACEOPS CONFERENCE, 2014, Pasadena, California.
Proceedings… 2014.p.1-16. DOI:10.2514/6.2014-1604.

GRIEU, J. Analyse et évaluation de techniques de commutation Ethernet
pour l’interconnexion des systémes avioniques. 2004. 145 p. Thesis
(Docteur en Réseaux et Télécommunications) - Institut National Polytechnique
de Toulouse, France, 2004.

GWALTNEY, D. A.; BRISCOE, J. M. Comparison of communication
architectures for spacecraft modular avionics systems. Alabama: Marshall
Space Flight Center, 2006. NASA Report TM-2006-214431.

HALL, E. C. Journey to the Moon: the history of the Apollo guidance
computer. Reston, Virginia: AIAA, 1996. 196 p. ISBN 1-56347-185-X.

https://www.faa.gov/aircraft/air_cert/airworthiness_certification/aw_overview/
https://docs.freebsd.org/en_US.ISO8859-1/books/developers-handbook/sockets-essential-functions.html
https://docs.freebsd.org/en_US.ISO8859-1/books/developers-handbook/sockets-essential-functions.html

166

HAMMOND, J. L.; BROWN, J. E.; LIU, S. S. Development of a transmission
error model and error control model. New York: RADC, 1975. Technical
Report RADC-TR-75-138.

HARTER, P. K. Response times in level-structured systems. Boulder,
Colorado: University of Colorado, 1984. Technical Report CU-CS-269-84.

IBM. Networking token ring. 2013. Available from:
https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzaju/rzaju000pdf
.pdf?view=kc. Access on: 01 feb. 2021.

INSTITUTE OF ELECTRICAL AND ELECTRONICS - IEEE. IEEE standard
802.3: standard for ethernet. New York, 2012. 634 p.

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS - IEEE. IEEE
standard 802.2: part 2: logical link control. New York, 1998. 253 p.

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS - IEEE.
Logical Link Control (LLC) public listing. Available from:
https://standards.ieee.org/products-services/regauth/llc/public.html. Access on:
01 feb. 2021.

INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS - IEEE.
Ethertype public listing. Available from:
http://standards-oui.ieee.org/ethertype/eth.txt. Access on: 01 feb. 2021.

INTERNATIONAL STANDARDS ORGANIZATION - ISO. ISO/IEC 7498-1:
information technology - open systems interconnection - basic reference model.
1994. Available from: https://www.iso.org/standard/20269.html. Access on: 01
feb. 2021.

INTERNATIONAL STANDARDS ORGANIZATION - ISO. ISO/IEC 9899:
programming languages - C. 2011. Available from:
http:// http://www.open-std.org/jtc1/sc22/wg14/www/projects#9899. Access on:
01 feb. 2021.

JOSEPH, M.; PANDYA, P. Finding response times in a real time system The
Computer Journal, v. 29, n. 5, p. 390-395, 1986.

KEMAYO, G.; RIDOUARD, F.; BAUER, H.; RICHARD, P. Optimistic problems
in the trajectory approach in FIFO context. In: IEEE CONFERENCE ON
EMERGING TECHNOLOGIES FACTORY AUTOMATION (ETFA), 18., 2013.
Proceedings… 2013. p.1-8. DOI: 10.1109/ETFA.2013.6648054.

KEMAYO, G.; RIDOUARD, F.; BAUER, H.; RICHARD, P. A Forward end-to-end
delays Analysis for packet switched networks. In: INTERNATIONAL
CONFERENCE ON REAL-TIME NETWORKS AND SYSTEMS (RTNS), 22.,
2014, New York. Proceedings… 2014. p.65-74. DOI:
10.1145/2659787.2659801.

https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzaju/rzaju000pdf.pdf?view=kc
https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_72/rzaju/rzaju000pdf.pdf?view=kc
https://standards.ieee.org/products-services/regauth/llc/public.html
http://standards-oui.ieee.org/ethertype/eth.txt
https://www.iso.org/standard/20269.html
http://www.open-std.org/jtc1/sc22/wg14/www/projects#9899

167

KEMAYO, G.; BENAMMAR, N.; RIDOUARD, F.; BAUER, H.; RICHARD, P.
Improving AFDX end-to-end delays analysis. In: IEEE CONFERENCE ON
EMERGING TECHNOLOGIES & FACTORY AUTOMATION (ETFA), 20., 2015.
Proceedings… 2015. DOI: 10.1109/ETFA.2015.7301463.

KOECHEL, S.; LANGERB, M. New space: impacts of innovative concepts in
satellite development on the space industry In: INTERNATIONAL
ASTRONAUTICAL CONGRESS (IAC), 69., 2018, Bremen. Proceedings…
2018. IAC-18-E6.3.2.

KOOPMAN, P.; CHAKRAVARTY, T Cyclic Redundancy Code (CRC)
polynomial selection for embedded networks. In: INTERNATIONAL
CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS (DSN), 2004,
Florence. Proceedings… 2004. DOI: 10.1109/DSN.2004.1311885.

KOOPMAN, P. 32-bit cyclic redundancy codes for internet applications. In:
INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND
NETWORKS (DSN), 2002, Washington-DC. Proceedings… 2002. p. 459-472.
DOI: 10.1109/DSN.2002.1028931.

KRAFCIK, J. F. Triumph of the lean production system. SLOAN Management
Review, v. 30, n. 1, 1988.

LE BOUDEC, J.Y.; THIRAN, P. Network calculus: a theory of deterministic
queuing systems for the internet. Berlin: Springer-Verlag, 2001. 114p.

LEXICO. Definition of communication in English. Available from:
https://www.lexico.com/en/definition/communication. Access on: 01 feb. 2021.

LEXICO. Definition of topology in English. Available from:
https://www.lexico.com/en/definition/topology. Access on: 01 feb. 2021.

LIU, C. L.; LAYLAND, J. W. Scheduling algorithms for multiprogramming in a
hard-real-time environment. Journal of the Association for Computing
Machinery, v. 20, n. 1, p. 46-61, 1973.

LOVELESS, A. On TTEthernet for integrated fault-tolerant spacecraft networks.
In: AIAA SPACE CONFERENCE, 2015, Pasadena, California. Proceedings…
2015. DOI: 10.2514/6.2015-4526.

LUXI, Z.; QIAO, L.; YING, X.; ZHONG, Z.; HUAGANG, X. Using multi-link
grouping technique to achieve tight latency in network calculus. In: IEEE/AIAA
DIGITAL AVIONICS SYSTEMS CONFERENCE (DASC), 32., New York, 2013.
Proceedings… IEEE, 2013. DOI:10.1109/DASC.2013.6712551.

MARTIN, J.; CHAPMAN, K. K.; LEBEN J. Local area networks: architectures
and implementations. 2.ed. Saddle River: Prentice-Hall, 1994. 566p.

https://www.lexico.com/en/definition/communication
https://www.lexico.com/en/definition/topology

168

MCKENZIE, A. INWG and the conception of the internet: an eyewitness
account. IEEE Annals of the History of Computing, v. 33, n. 1, p 66-71, 2011.

MERRIAN-WEBSTER. Definition of communication. Available from:
https://www.merriam-webster.com/dictionary/communication. Access on: 01
feb. 2021.

MILITARY STANDARD. Digital time division command/response multiplex
data bus. Available from:
https://quicksearch.dla.mil/qsDocDetails.aspx?ident_number=275874. Access
on: 01 feb. 2021.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION - NASA. Orion
spacecraft. Available from:
https://www.nasa.gov/exploration/systems/orion/index.html. Access on: 01 feb.
2021.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION - NASA. Daniel
S. Goldin, Available from:
https://www.hq.nasa.gov/office/pao/History/dan_goldin.html. Access on: 01 feb.
2021.

PARKES, S.; ARMBRUSTER, P.; SUESS, M. The spacewire on-board data-
handling network. [S.l.]: ESA, 2005.

PENNA, S.; SOUZA, M.L.O. Estimating delays in switched ethernet networks
on board of aerospace vehicles. IEEE Latin America Transactions, v.100, n.
1, 2020. Available from:
https://latamt.ieeer9.org/index.php/transactions/article/view/3889. Access on: 01
feb. 2021.

PERLMAN, R. J. Interconnections: bridges, routers, switches, and
internetworking protocols. 2.ed. Reading: Addison-Wesley Longman, 1992.
537p.

PETIT, J. L. CAN bus for telecom avionics. Torino: TAS, 2012. TAS-12-
TL/IA/EA/D-29.

REIFEGERSTE, S. CRC tester v1.2. 2003. Available from:
http://zorc.breitbandkatze.de/crctester.c. Access on: 01 feb. 2021.

SOCIETY OF AUTOMOTIVE ENGINEERS - SAE. Digital time division
command/response multiplex data bus AS15531. Available from:
https://www.sae.org/standards/content/as15531/. Access on: 01 feb. 2021.

SOCIETY OF AUTOMOTIVE ENGINEERS - SAE. ARINC-629 multi-
transmitter data bus parts 1 and 2. Available from: https://www.aviation-
ia.com/sae-search/content/629. Access on: 01 feb. 2021.

https://www.merriam-webster.com/dictionary/communication
https://quicksearch.dla.mil/qsDocDetails.aspx?ident_number=275874
https://www.nasa.gov/exploration/systems/orion/index.html
https://www.hq.nasa.gov/office/pao/History/dan_goldin.html
https://latamt.ieeer9.org/index.php/transactions/article/view/3889
http://zorc.breitbandkatze.de/crctester.c
https://www.sae.org/standards/content/as15531/
https://www.aviation-ia.com/sae-search/content/629
https://www.aviation-ia.com/sae-search/content/629

169

SPACE ETHERNETY PHYSICAL LAYER TRANSCEIVER - SEPHY. Space
Ethernet PHYsical Layer Transceiver. Available from: http://www.sephy.eu/.
Access on: 01 feb. 2021

SEIFERT, R. The switch book: the complete guide to LAN switching
technology. Indianapolis: John Wiley & Sons, 2000. 698p.

STAKEM, P. H. The history of spacecraft computers from the V-2 to the
space station. [S.l.]: Independent Publisher, 2017. 202 p.

TAGAWA, G. B. S.; SOUZA, M. L. O. An overview of the Intergrated Modular
Avionics (IMA) concept. In: CONFERÊNCIA BRASILEIRA DE DINÀMICA,
CONTROLE E APLICAÇÕES (DINCON). Proceedings… 2011. p. 277-280.

TANENBAUM, A. S. Computer networks. 4.ed. Englewod Cliffs: Prentice-Hall,
2002. 912p.

TELECOMMUNICATIONS INDUSTRY ASSOCIATION – TIA. TIA/EIA RS-422-
B: electrical characteristics of balanced voltage digital interface circuits.
Arlington, Virginia, 1994. 38p.

THOMAS, A. An implementation of the token bucket algorithm in Python.
2007. Available from: https://code.activestate.com/recipes/511490-
implementation-of-the-token-bucket-algorithm/. Access on: 01 feb. 2021.

TTTECH. Time-triggered protocol TTP/C high-level specification document
protocol version 1.1. Romenia, Nov. 2003.

TTTECH. TTEthernet specification. Romenia, Nov. 2008.

UNITED STATES DEPARTMENT OF DEFENSE. AIM MIL-STD-1553 tutorial.
Freiburg, Germany: AIM GmbH, 2010.

VDOVIN, P. M.; KOSTENKO, V. A. Organizing message transmission in AFDX
networks. Programming and Computer Software, v. 43, n. 1, p. 1–12, 2017.

VDOVIN, P. M. AFDX designer, Available from:
https://github.com/PavelVdovin/AFDX_Designer. Access on: 01 feb. 2021.

W3C. Extensible Markup Language (XML) 1.0. 2008. Available from:
https://www.w3.org/TR/2008/REC-xml-20081126/. Access on: 01 feb. 2021.

W3C. XML schema. 1998. Available from: https://www.w3.org/XML/Schema.
Access on: 01 feb. 2021.

WATKINS, C. B.; WALTER, R. Transitioning from federated avionics
architectures to Integrated Modular Avionics. In: AIAA/IEEE DIGITAL
AVIONICS SYSTEMS CONFERENCE, 26., 2007, Dallas, Texas.
Proceedings… 2007. DOI:10.1109/DASC.2007.4391842.

http://www.sephy.eu/
https://code.activestate.com/recipes/511490-implementation-of-the-token-bucket-algorithm/
https://code.activestate.com/recipes/511490-implementation-of-the-token-bucket-algorithm/
https://github.com/PavelVdovin/AFDX_Designer
https://www.w3.org/TR/2008/REC-xml-20081126/
https://www.w3.org/XML/Schema

170

WEBB, E. Ethernet for space flight applications. In: IEEE AEROSPACE
CONFERENCE, 2002, Big Sky, Montana. Proceedings… 2002. DOI:
10.1109/AERO.2002.1036905.

WENPING, W.; XIANGHUI, W.; BO, H.; YAHANG, Z.; YONG, L. Design of
OBDH subsystem for remote sensing satellite based on onboard route
architecture. In: MATEC WEB OF CONFERENCES, 139., 2017.
Proceedings… 2017. DOI: 10.1109/TSSA48701.2019.8985466.

WERTZ, J. R. Assessment of smallsat utility and the need for dedicated, low-
cost, responsive small satellite launch. In: AIAA RESPONSIVE SPACE
CONFERENCE, 8., Los Angeles, 2010. Proceedings… 2010. AIAA-RS8-2010-
5005.

WIRESHARK GENERIC DISSECTOR - WSDG. Wireshark Generic
Dissector. Available from: http://wsdg.free.fr. Access on: 01 feb. 2021.

http://wsdg.free.fr/

171

APPENDIX A – A NEW METHOD FOR ESTIMATING WORST CASE

TRANSMISSION DELAY IN SWITCHED ETHERNET NETWORKS

Distributing computation and communication is now a common approach for

simplifying the design of embedded systems used in aerospace vehicles

(WATKINS et al, 2007). In distributed systems, similarly designed modules can

be used to process data, as well as to capture data from sensors and to send

commands to actuators. Such initiative can reduce the diversity of part-numbers

and simplify parts replacement, just to mention two advantages (GASKA et al.,

2015).

However, connecting modules in distributed systems can become quite

complex with the increasing number of modules involved. In larger distributed

systems, Ethernet physical medium has become a frequent choice (TTTECH,

2008) due to its high transmission speed and immense availability of off-the-

shelf solutions, both in hardware (network transceivers) and in software

(network protocols).

Ethernet can be used in point-to-point connections between modules, but its

greatest advantage is to provide a very good means for implementing “star”

topologies (MARTIN, 1994). In such topologies, the presence of one or more

traffic switching device is essential for routing data transmissions from one

module to another module or to many modules.

However, Ethernet does not provide any means of synchronizing data

transmissions other than a physical medium access protocol called Carrier-

Sense Multiple Access with Collision Detection, CSMA/CD for short (IEEE,

2012). This CSMA/CD protocol was essential when Ethernet offered only “bus”

topologies (MARTIN, 1994) until mid 90’s. After the introduction of Ethernet

switches(PERLMAN, 1999), the issue moved from controlling transmission

collisions on a shared physical medium to the internal design of Ethernet

switches and its advantages and disadvantages (SEIFERT, 2000).

If Ethernet itself does not provide a deterministic behavior on transmissions

initiated by connected modules, a distributed processing system designer has to

reach out for other means to make sure that the system will operate as required

in all foreseeable conditions. For a viable design of such complex systems, it is

172

essential to estimate the worst possible end-to-end delay experienced by any

data fragment traveling through the network, for it affects the nature and

quantity of resources required by both hardware and software components

involved in its processing and ultimately the behavior of aerospace vehicles.

The academic world has been providing such means since the beginning of the

2000’s. Early studies used a method called “Network Calculus”, which was

published by René L. Cruz in 1991 (CRUZ, 1991) and was later formalized by

Jean-Yves Le Boudec and Patrick Thiran in 2001 (LE BOUDEC et al., 2001).

Network Calculus provides a “fluid model” for the network traffic, whereby a

data flow is assumed to be continuous in time as if it could be looked at as a

liquid flowing inside a tube.

On most cases, Network Calculus principles provide a conservative means of

estimating end-to-end delays in network data transmissions, but it is well

accepted when distributed processing systems require certification by a

designated authority, such as the Federal Aviation Administration (FAA, 2020)

in the United States and the Europen Aviation Safety Administration (EASA,

2020) in Europe.

When crossing a traffic switch, Ethernet frame transmissions have to obey the

switching fabric design. The most common commercial design is called store-

and-forward (SEIFERT, 2000), in which incoming frames are received and

stored up to their last bit before they get routed to one or more switch output

ports. Taking into account that Ethernet transmissions, once started are not

interrupted, two Ethernet frames going out through the same output port in a

switch using store-and-forward fabric are transmitted one after the other. This

effect was described as “serialization” by Henri Bauer (BAUER, 2011) and this

is the effect used for constructing the scheduling criterion used by the new

method.

Methods for estimating the amount of time a particular data frame takes to

traverse a networked infrastructure has become a very rich field of research. A

fairly large number of publications was produced since early 2000’s (GRIEU,

2004) (GEORGE et al., 2005) (FRANCES et al., 2006); and even recently, in

particular by a group linked to Henri Bauer (KEMAYO et al, 2013) (KEMAYO et

173

al, 2014) (KEMAYO et al, 2015). In fact, end-to-end network transmission delay

estimation is one of the key design factors for developing modern distributed

and highly integrated electronics on board of aerospace vehicles.

The search for a less conservative and mathematically less complex method for

estimating the end-to-end delay for a particular message flow throughout a

network infrastructure is the ground motivation of this work, especially if results

by using such method can be obtained using commercial-off-the-shelf software

tools.

The following sections present important remarks which are essential to the

correct understanding of the new method, introduce two key propositions and

two important definitions that form the basis of the method, present a simple

procedure for implementing the transmission schedule generated by the method

and compare the results obtained with the new method with a previously

published work and those obtained using a publicly available software tool.

A.1 Remarks on network traffic pattern and bandwidth utilization

Network traffic

Network traffic in distributed systems used on board of aerospace vehicles

tends to be rigorously constrained by design. That is, no transmitting node is

expected to generate more network traffic than it is allowed to by design.

Further, means of preventing a transmitting node to misbehave and of

protecting the network from a misbehaving node are usually put in place

through the implementation of network traffic shaping and policing algorithms

(CISCO, 2020).

The network traffic presumed for this work does imply that: no spurious frame

transmissions are expected and; all frame transmissions accounted for are

those programmed by the designers of the distributed system.

Network utilization

Computer tasks developed for controlling flight of aerospace vehicles are

usually periodic due to fact that the implemented algorithms work in discrete

time. The majority of the tasks involved in input or output operations with an

external device are also expected to be periodic, therefore there could have

174

been more than one instance of the same network frame in the time interval

considered for the estimation of the longest delay of a particular frame.

However, the scheduling criterion described in the next sections takes into

account only one instance of each network frame in the analysis.

The concept of “utilization” in the context of schedulabilty analysis of a set of

computer tasks was introduced by C. L. Liu and James W. Layland (LIU et al.,

1973) and used by P.K. Harter (HARTER, 1984) and M. Joseph and P. Pandya

(JOSEPH et al., 1986) for estimating the time a computer task needs to execute

at least once, called “response time” of a task, in the presence of other higher

priority tasks.

This utilization is expressed by the quotient C/T, where C is the time a task

takes to execute without interference (“C” as in “Capacity”) and T is the task

period. The maximum value of utilization for a schedulable computer task set is

1 (one).

When analyzing the response time of a computer task, the expression

ceiling(Δt/T).C needs to be evaluated for each task with priority higher than the

task being analyzed and added together, where Δt is the time interval being

considered and ceiling() is the smallest integer equal or greater than its

argument. The longest Δt is usually evaluated starting with the sum of the C of

all tasks in the set and repeating the calculation iteratively until the value of Δt is

stable.

In the context of transmitting network frames using Ethernet, if one considers C

being the amount of time a frame takes to be transmitted on the physical

medium, C will fall within a time interval from a few microseconds up to a few

hundreds of microseconds. For instance, the minimum frame length admissible

in Ethernet is 64 bytes and the maximum is 1518 bytes, and each frame

transmission requires extra 20 bytes of overhead (IEEE, 2012). On a 100

megabit per second physical medium, the shortest frame take 6.72

microseconds and the longest frame take only 123.04 microseconds to be

transmitted.

In the context of controlling flight of an aircraft, it is common to see tasks being

executed 50 times per second, but in modern “fly-by-wire” systems this rate can

175

go up to 500 times per second. Controlling attitude and guidance in space

vehicles requires much less frequent computations. So, task periods T for

aircraft flight control applications usually vary from 2 to 20 milliseconds.

The time interval Δt in which network frames are expected to be transmitted by

all tasks involved in flight control applications needs to be shorter than the

shortest period of a typical task designed for the purpose, that is, less than its

period T. In fact, Δt should not be more than a few hundreds of microseconds

on a 100 megabit per second Ethernet physical medium, for Δt is in the order of

magnitude of the sum of the C of all network frames involved.

If one rounds up the quotient of Δt/T to the first largest integer, in short the

ceiling(Δt/T), using the orders of magnitude of Δt (in the order of 102

microseconds) and T (in the order of 103 microseconds) mentioned above, the

expression ceiling(Δt/T) will be evaluated as 1. Therefore, it is reasonable to

assume that one and only one instance of any network frame will be present

within the time interval required for transmitting all network frames in a typical

flight control application, which is the most critical application of all in a

computer controlled aircraft or space vehicle.

A.1 Serialization of network traffic on a transmitting node

The first step into the estimation of end-to-end delay in a network such as those

used in distributed systems on board aerospace vehicles is to bound the

amount of interference one Ethernet frame transmission can cause to another

Ethernet frame transmission going out of the same network node:

Proposition 1

On an Ethernet network node, any frame transmission can be delayed at most

by the sum of the transmission times of all (including itself) Ethernet frames

scheduled to be sent through the same Ethernet port.

Rationale

Ethernet devices, be it a network card or a switch, usually organize frames in a

transmission queue and transmits one frame after the other until the queue is

empty in a “fist-in-first-out” fashion.

176

Since Ethernet frames are transmitted serially, hence the term “serialization”

coined by Bauer, each frame has to wait for the transmission of all other frames

ahead of itself in the transmission queue and the last bit of the frame under

observation has to wait until all other bits of the same frame go out into the

physical medium.

For estimating frame transmission delays on Ethernet physical medium, it is

important to account for the mandatory 8-byte long Preamble and Start-of-

Frame-Delimiter (SFD) fields and the 12-byte long data transmission gap called

Inter-Frame Gap (IFG) required by the Ethernet physical medium access

protocol (IEEE, 2012), for these (8 + 12)x8 equal to 160 bit-times also occupy

the physical medium exclusively.

For example, considering the transmission of two Ethernet frames of sizes 230

and 480 bytes on a physical medium speed of 100 megabits per second, any

frame transmission is delayed by at most 60 microseconds, as follows:

[(230 + 8 + 12 bytes) x 8 bit/byte]/100 bit/microsecond = 20 microseconds

[(480 + 8 + 12 bytes) x 8 bit/byte]/100 bit/microsecond = 40 microseconds

Note that the transmission order does not matter, since the last bit of any frame

has to wait for the transmission of all other bits in the same frame and for the

complete transmission of the frames ahead of itself in the transmission queue.

In this simple scenario, Network Calculus produces the same value of 60

microseconds for the “delay bound”. As defined in the work by Le Boudec and

Thiran, this delay bound is the longest horizontal segment separating two

functions as illustrated in Figure A.1: an “arrival curve”, modeled by a simple

(b+r.t) linear function, and a “service curve”, modeled by a simple (R.t) linear

function.

177

Figure A.1 – “Delay bound” as modeled by Network Calculus.

The delay bound for the sum of two flows, one for the 250 byte (= 2000 bits)

long frame and the other for the 500 byte (= 4000 bits) long frame, is obtained

by dividing the total length of the two frames (b=6000 bits) by the physical

medium speed (R=100 bits per microsecond), as shown in Figure A.1,

irrespective of the value of the constant rate of the flow (r) modeled by the

arrival curve. In this simple case, the maximum calculated delay is 60

microseconds.

Some industry standards (ARINC, 2009) recommend adding a fixed delay to

account for the latency that lower levels of software (or firmware) usually

present for initiating and terminating an input or output operation on a physical

device. The amount used as this fixed delay is completely arbitrary and, at best,

should be the result of a careful analysis for each combination of software and

hardware platforms.

To account for a fixed delay, this amount should be added to the delay

calculated using Proposition 1 above

A.2 Serialization of network traffic on a switching device

The effect of serialization on a switching device is illustrated in Figures A.2, A.3

and A.4.

In Figure A.2, two incoming frames F1 and F2, received on switch input ports 1

and 2 respectively, are routed for going out through the same switch output

port. This Figure A.2 depicts the time interval in which both frames are received

and the time interval in which they are transmitted on the physical medium. For

clarity, other latencies due to internal delays in the switching fabric are omitted.

Note that the serialization effect in this case is the same described for a

178

transmitting node in the previous paragraph and the transmission delay

experienced by any frame follows Proposition 1.

Figure A.2 – Switch output for two incoming frames F1 and F2.

Assume that, instead of one single F2 frame coming on switch port 2, two

shorter frames F2-1 and F2-2, for which the total transmission time is the same

as for F2, come in as shown in Figure A.3. In this situation, frame F1 has

apparently the same amount of traffic ahead in the switching fabric. However,

due to serialization, frame F1 will suffer interference from either frame F2-1 or

from frame F2-2, but not from both.

Figure A.3 – Switch output for F2 split in two shorter frames.

Frame F1 first bit arrival time may coincide with the first bit arrival time of either

F2-1 as shown in Figure A.3 or F2-2 as shown in Figure A.4. In either case,

frame F1 will have to wait until either frame F2-1 or frame F2-2 gets completely

transmitted before the switching fabric starts its transmission. In this alternative

179

scenario, frame F1 will be delayed by at most its own frame transmission time

and by the longest transmission time between frames F2-1 and F2-2.

Figure A.4 – Switch output for frame F2 (alternative scenario).

In this “split-frame” scenario, frame F1 benefits from the fact that frames F2-1

and F2-2 have been “serialized” by the node which originated them

A.3 Definition of the “critical instant” in a switching fabric

The term “critical instant” was originally coined by Liu and Layland (1973) in the

context of schedulability analysis for a set of computer tasks:

A critical instant for a task is defined to be an instant at which a request for that

task will have the largest response time.

For the context of scheduling frame transmissions in a switching fabric, the

“critical instant” in Liu and Layland’s text is here slightly redefined:

Definition 1

The “critical instant” for a frame is defined as the arrival instant of its first bit at

which the frame will experience its longest transmission delay.

Rationale

It is important to note that: 1) computer tasks in aerospace applications are

usually scheduled according to some priority assignment scheme and tasks

with higher priority are scheduled first for execution; 2) the traditional Ethernet

switching fabric would queue frames for transmission on a particular switch

output port in the order they arrive on a “First-Come-First-Served” basis; 3) in

the context of building the worst-case scenario for scheduling frames for

180

transmission, it is assumed here that the frame under observation has always

the “lowest priority”, that is, it is scheduled to be transmitted after all other

frames sharing the same switch output port are transmitted, despite their arrival

order.

In Figure A.5, frames F1, F2 and F3 received on different switch input ports

have their critical instant when the first bit of all frames are received at the same

instant in time.

Figure A.5 – “Critical instant” for incoming frames F1, F2 and F3.

Once the critical instant is defined for this simple scenario, the longest

transmission delay for either frame in Figure A.5 is simply the time interval

taken for transmitting frames F1, F2 and F3 as partially illustrated in Figure A.6.

Actually, there are (n-1)! possible permutations for each of the n frames chosen

to be the last one transmitted.

181

Figure A.6 – Transmission delay for frames F1, F2 and F3.

A.4 Definition of “transmission backlog” in a switching fabric

Assume that multiple frames arrive on different switch input ports and on

different instants in time and are scheduled to be transmitted through the same

switch output port.

Definition 2

Once the “critical instant” for a particular frame is defined, the remaining frames

not involved in its construction build the “transmission backlog” for the

associated switch output port, given that particular “critical instant”.

Rationale

On Figure A.7, frames F1, F4 and F6 (length of F1 being the longest) are

received on switch port 1, frame F3 is received on switch port 2 and frames F2

and F5 (length of F5 being the longest) are received on switch port 3, all

scheduled for transmission through the same switch output port. Assume that

the frame under observation is frame F4.

182

Figure A.7 – Frames F1, F2, F3, F4, F5 and F6 illustrated.

The critical instant for frame F4 is built by taking the longest frame from each of

the other input ports and aligning in time the arrival instant of their first bits. The

remaining frames F1, F6 and F2 represent the “transmission backlog” for frame

F4 at that particular switch output port, given the particular critical instant built

for this frame F4, as shown in Figure A.8.

Figure A.8 – “Critical instant” and “transmission backlog” for frame F4.

Should frames F4, F3 and F5 be the only frames being transmitted, once the

critical instant is built for frame F4, the longest transmission delay for this frame

F4 could be estimated as done in Figure A.8 above. However, the existence of

F6

F4

F1 F3 F2

F5

12

8

10

16 10

12

F1

F4

F6

F2

F5

F3

SWITCH

1

2

3

4

183

a transmission backlog affects the transmission order of the remaining frames in

the set under observation and ultimately affects the transmission delay of frame

F4.

The amount of interference caused by the frames in the transmission backlog is

examined in the next section.

A.5 Worst-case scenario for the “transmission backlog”

Once the critical instant for frame F4 is built, the arrival of all other frames in the

corresponding transmission backlog for the particular switch output port shall be

arranged in a way that F4 will experience its longest transmission delay.

Proposition 2

Given a particular “critical instant”, the frame under observation will experience

its longest transmission delay when the frames belonging to the associated

“transmission backlog” are arranged arriving before the frames participating in

the “critical instant” at each switch input port in such a way that the arrival

instant of the last bit of any frame is immediately followed by the arrival instant

of the first bit of the next frame.

Rationale

In Figure A.9, the transmission backlog for frame F4’s critical instant is built with

frames F1 and F6 arriving before F4, and frame F2 arriving before frame F5.

Frame F4 will experience its longest transmission delay when the transmission

backlog is built as follows: a) the arrival instant of the last bit of frame F1 is

immediately followed by the arrival instant of the first bit of frame F6; b) the

arrival instant of the last bit of frame F6 is immediately followed the arrival

instant of the first bit of frame F4; c) the arrival instant of the last bit of frame F2

is immediately followed by the arrival instant of the first bit of frame F5. Since no

other frames arrive on the same input port of frame F3, there is no contribution

to the transmission backlog from switch input port 2.

184

Figure A.9 – Worst case scenario for frame F4.

Figure A.9 illustrates how the “serialization” effect is materialized on switch input

ports 1 and 3. In short, Proposition 2 says that frames belonging to the

transmission backlog should be “serialized” with the frames participating in the

critical instant at each switch input port.

A.6 Procedure for building the worst-case frame transmission schedule

Given a set of frames arriving on different switch input ports and scheduled to

be output through the same switch output port, the following steps use the

critical instant and the transmission backlog for a frame chosen from this set to

build the transmission schedule in which that particular frame will experience its

longest transmission delay:

NOTE: Once a frame is selected (the frame under observation), the switch input

port on which the selected frame arrives is referred to as the “selected port” in

this section.

1. The selected frame should be the last frame transmitted;

2. On all switch input ports other than the selected port, select the longest

frames;

185

3. The selected frame and the other frames selected in the previous step shall

have the arrival instant of their first bits aligned in time; this step builds the

critical instant for the selected frame;

4. Frames remaining from steps 1 and 2 on the selected port and on each of the

other switch input ports build the transmission backlog for the selected frame;

5. Frames are expected to arrive “back-to-back” on the same input port, that is,

there is no transmission gap between the arrival instant of the last bit of a frame

and the arrival instant of the first bit of the next frame;

6. Frames shall be scheduled for transmission starting with the frame with the

earliest arrival instant, then picking frames from each of all switch input ports

moving forward in time.

This step-by-step procedure was used for scheduling the transmission of

frames F1, F2, F6, F5, F3 and finally F4 in such a way that frame F4 will

experience its longest transmission delay, as shown in Figure A.10. It should be

noted that in this scenario, the order of arrival of frames F1 and F6 is irrelevant

to the composition of the transmission delay for frame F4 (F6 might as well

have arrived before F1).

Figure A.10 – Transmission schedule for frame F4.

186

A.7 Comparing results with network calculus on a simple case

In a work published in 2013, Zhao, Li, Xiong, Zheng and Xiong, all from Beihang

University, Beijing, P. R. of China, introduced a very interesting approach for

taking “serialization” into account for the estimation of end-to-end transmission

delays in complex networked systems when using Network Calculus (ZHAO et

al., 2013). The authors indicate that their proposition reduces the overestimation

produced by the original Network Calculus approach when a data flow crosses

several network elements. In Figure A.11, the results published for the flow

called v1 in its path through the network from node e1 to node e7 crossing

switches S1 and S3 are reproduced. Frames in all flows have the same length

5000 bits, therefore the same transmission time of 50 microseconds on a 100

megabit per second physical medium. Flows have the same constant

transmission rate of 10 bits per microsecond and can be expressed analytically,

according to Network Calculus, as a linear function (5000 + 10t) where 5000 is

a “burst” of the size of the longest frame.

Figure A.11 – Network analyzed by Zhao et al. (2013).

Note that v1 exiting node e1 suffers interference only from v2 and, as expected,

the delay experienced by v1 is simply the time taken to transmit one frame of v1

and one frame of v2, 100 microseconds total as shown in Figure A.12(a). This is

in-line with Proposition 1.

However, according to the authors when adopting principles of Network

Calculus, flow v1 has to be modified when exiting e1, because it takes into

account an increase in burst equal to the amount of v1 traffic accumulated

187

during the 50 microseconds node e1 takes transmitting a frame of v2. Figure

12(b) shows flow v1 modeled as (5000+10t) serviced by a function modeled as

100(t-50)+. This interference caused by v2 on v1 when exiting e1 results in an

output flow v1* with a burst of 5500 bits (the original 5000 bits plus 10 bits per

microsecond accumulated for 50 microseconds), as shown in Figure A.12(c).

Figure A.12 – Output flow v1* for v1 exiting e1 (not in scale).

This new flow v1* in turn suffers interference from flow v3 when exiting S1 and

the delay of 105 microseconds calculated using Network Calculus is illustrated

in Figure A.13.

Figure A.13 – Maximum delay of v1* exiting S1 (not in scale).

The authors calculate the delay for v1 exiting S1 to be 105 microseconds, even

when one considers that v1 suffers interference only from v3. By Proposition 1,

the delay experienced by v1 should be also 100 microseconds, since the

scenario for v1 exiting S1 is similar to the scenario for v1 exiting e1.

The delay estimation for v1 exiting S3 is far more complex, because

“serialization” comes into play. One has to model the flows of v4 exiting e3, v6

188

and v7 exiting e4, then “serializing” v6 and v7 before “adding” to v4 while

crossing S2 towards S3, then “serializing” v4 and v7 before “adding” to v1 while

crossing S3 towards e7. The result published by the authors is 124.899

microseconds.

Using Proposition 2 and noting that v3 and v6 are routed to a different switch

output port, v1 should suffer interference either from v4 or from v7 (not from

both!) as shown in Figure A.14, as they get “serialized” exiting S2. Therefore,

Proposition 2 calculates 100 microseconds for the delay for v1 exiting S3, as

shown in Figure A.15.

Figure A.14 – Transmission schedule scenarios for frame v1.

Figure A.15 – End-to-end delay for frame v1 under Proposition 2.

A.8 Comparing results with the “AFDX_Designer”

Tools that implement methods of estimating end-to-end delays in embedded

networks are seldom made public. However, there is one called

“AFDX_Designer” (VDOVIN et al., 2017) available through github (VDOVIN,

189

2020) which, according to the author, implement a variation of the Trajectory

Approach introduced by Bauer (2011). The tool can be configured to mimic the

same network analyzed in the previous section, in particular by setting the delay

experienced when crossing a switch to 0.

The AFDX_Designer tool follows the ARINC-664 Part 7 standard (ARINC,

2009), which relies on a switched Ethernet/IP/UDP network topology and on a

virtual, rate-constrained communication channel called “Virtual Link” (vl). A vl

allows transmission of at most “Lmax” bytes every “Bandwidth Allocation Gap”

(BAG) milliseconds.

The ARINC-664 Part 7 standard does not allow for a BAG shorter than 1

millisecond, therefore a vl in the AFDX_Designer would need to be created with

Lmax of 1250 bytes (twice the original length of 5000 bits per frame divided by

8) and a BAG of 1 millisecond (twice the period resulting from 5000 bits per

frame divided by a constant transmission rate of 10 bits per microsecond). The

result of this maneuver is that all calculated end-to-end transport delays

(indicated as “Response time” in the “Virtual links” window in the tool) will

appear twice the actual value.

The result obtained by the same flow v1 analyzed in previous section is shown

in Figure A.16, a screen copy of the AFDX_Designer tool output with a few

extra annotations to help correlating the elements in the graphic window of the

tool with the network of Figure A.11.

The elements e1.1, e1.2, e2.1 and so on, are the “partitions”, operating system

entities which produce or consume the messages transported by “flows”. The

elements e1, e2, e3 and so on, are the “End-Systems”, ARINC-664 Part 7

network nodes which process the outgoing or incoming “flows”. The elements

S1, S2, S3 and so on, are the network switching devices.

The “flow” f1 uses Virtual Link v1, which goes from e1 to e7 as in Figure A.11

carrying messages from e1.1 to e7.1.

190

Figure A.16 – End-to-end delay for flow v1 using “AFDX_Designer”.

The value 600 microseconds calculated by the tool as “Response Time” for v1

on its path from node e1 to node e7 is, as expected, twice the value obtained in

the previous section using Proposition 1 and Proposition 2.

A.9 Closing remarks

The new method for estimating the longest transmission delay experienced by a

data frame traveling across a switched network topology relies on a scheduling

criterion that explores the “serialization” effect observed in frame based network

transmissions

This criterion is materialized using two propositions: 1) the amount of delay

experienced by any frame is simply the time interval necessary to transmit all

frames in the transmitting queue onto the network physical medium; 2).network

frames suffer the effect of “serialization” when the network element is a network

traffic switching device.

191

The scheduling criterion depends on two definitions:

• The “critical instant” for a frame is defined as the arrival instant of its first

bit at which the frame will experience its longest transmission delay;

• Once the “critical instant” for a particular frame is defined, the remaining

frames not involved in its construction represent the “transmission

backlog” for the associated switch output port, given that particular

“critical instant”.

This new method for estimating the transmission delay for a network frame

while crossing an Ethernet switch does not take into account other delays due

to inner nature of the switching fabric. The only assumption is that the switch

operates “store-and-forward”, as most commercial and industrial switches do,

and not “cut-through” (SEIFERT, 2000).

Other details about the method can be found in reference Penna et al. (2020).

192

193

APPENDIX B – CONFIGURING A WIRESHARK GENERIC DISSECTOR

The Wireshark tool (WSGD, 2020) provide a means of parsing Ethernet frames

using what is called a “dissector”. Some of these “dissectors” are standard,

such as those which parse the IP protocol and the other Transport Layer

protocols over IP.

The new Data Link Layer protocol is an extension of the IEEE 802.2 Logical

Link Control, therefore its “dissector” can be built using the standard LLC

“dissector” and configuring two text files for directing additional frame parsing.

These two text files are:

• wsgd – the “generic dissector” file;

• fdesc – the data format description file.

The text files specifically built for the test case of the new LLC extended, IEEE

802.2 Data Link Layer protocol, are displayed in the next sections. The wsgd

file contains only the SAP numbers 114 and 116 for limiting the range of SAP

numbers that should be identified as belonging to the new LLC extended

protocol.

Directions on how to build these files can be found in the reference (WSGD,

2020). The installation of the “generic dissector” binary and text files depends

on the type and version of the operating system used.

B.1 WSGD file for the extended LLC Data Link Layer protocol

(filename: llce.wsgd)

Debug global flag

DEBUG

Protocol's names.

PROTONAME LLCE Protocol

PROTOSHORTNAME LLCE

PROTOABBREV llce

Specify when the dissector is used.

PARENT_SUBFIELD llc.dsap

PARENT_SUBFIELD_VALUES 114 116

Message's header type.

The message must begin by the header.

194

The header must contains MSG_ID_FIELD_NAME and any

MSG_SUMMARY_SUBSIDIARY_FIELD_NAMES.

MSG_HEADER_TYPE T_UI_header

Field which permits to identify the message type.

Must be part of MSG_HEADER_TYPE.

MSG_ID_FIELD_NAME sn

The main message type.

Must begins by the header.

This is a switch case depending on

the MSG_ID_FIELD_NAME field which is inside

MSG_HEADER_TYPE.

MSG_MAIN_TYPE T_UI_msg

Definitions of the packet's format.

PROTO_TYPE_DEFINITIONS

Debug flag only for interpreting the types

DEBUG

include llce.fdesc;

B.2 FDESC file for the extended LLC Data Link Layer protocol

(filename: llce.fdesc)

Header

struct T_UI_header

{

 uint8 sn;

 uint20{d=hex}{byte_order=big_endian} timestamp;

 uint12{d=hex}{byte_order=big_endian} crc12;

}

Basic types

struct T_UI_msg {

 T_UI_header snheader;

 raw(*) end_of_msg;

}

195

APPENDIX C – NODE CONFIGURATION FILES

The node configuration files used by the modules developed for the test case

were composed using XML (W3C, 2020).

There are two XML files, one for node CPM1 and one for node CPM2. Their full

texts are copied in the next two sections.

C.1 Configuration file for node CPM1

<configuration name="TEST001" host="CPM1">

<nodes>

 <node name="CPM1">

 <hexid>341</hexid>

 <unit>1</unit>

 </node>

 <node name="CPM2">

 <hexid>341</hexid>

 <unit>2</unit>

 </node>

</nodes>

<SAPs>

 <number>114</number>

</SAPs>

<channels>

 <channel id="1">

 <SSAP>114</SSAP>

 <DSAP>116</DSAP>

 <capacity>90</capacity>

 <tokens>60</tokens>

 <rate>30</rate>

 </channel>

</channels>

<services>

 <SAP number="116">

 <host>CPM2</host>

 </SAP>

</services>

<ports>

 <port number="1">

 <endp hops="0">CPM2</endp>

 </port>

</ports>

</configuration>

196

C.2 Configuration file for node CPM2

<configuration name="TEST001" host="CPM2">

<nodes>

 <node name="CPM2">

 <hexid>341</hexid>

 <unit>2</unit>

 </node>

 <node name="CPM1">

 <hexid>341</hexid>

 <unit>1</unit>

 </node>

</nodes>

<SAPs>

 <number>116</number>

</SAPs>

<channels>

 <channel id="1">

 <SSAP>114</SSAP>

 <DSAP>116</DSAP>

 <capacity>90</capacity>

 <tokens>60</tokens>

 <rate>30</rate>

 </channel>

</channels>

<services>

 <SAP number="114">

 <host>CPM1</host>

 </SAP>

</services>

<ports>

 <port number="1">

 <endp hops="0">CPM1</endp>

 </port>

</ports>

</configuration>

197

APPENDIX D – SOURCE CODE LISTINGS

The full source code listings in C Language for the modules CPM1 and CPM2

developed for the test case are copied the next two sections.

198

D.1 Source code for the CPM1 module

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <unistd.h>

#include <string.h>

#include "chndef.h"

#include "pcap.h"

#include "IEEE802UI.h"

NIBL myNIBL;

CIB myCIB;

NIB myNIB;

CCBL myCCBL;

SIBL mySIBL;

SHB mySHB;

PAB p1PAB;

PABL myPABL;

CBB myCBB;

pcap_hdr_t pcap_hdr;

pcaprec_hdr_t pcaprec_hdr;

IEEE802UI myUI;

char outfile[] = "UI.pcap";

FILE *poutFile = NULL;

199

struct timeval now;

struct timeval then;

#define FALSE 0

#define TRUE !(FALSE)

int powerUP = TRUE;

void bswap16(char *input)

{

 unsigned char tmp;

 tmp = input[1];

 input[1] = input[0];

 input[0] = tmp;

}

void bswap32(char *input)

{

 unsigned char tmp;

 tmp = input[0];

 input[0] = input[3];

 input[3] = tmp;

 tmp = input[1];

 input[1] = input[2];

 input[2] = tmp;

}

/* --- */

/* --- initialize()--- */

int fillNIBCIB()

{

 int i;

 myNIBL.nibcnt = 2;

200

 myNIBL.p2nib[0].nname[0] = '1MPC';

 myNIBL.p2nib[0].nname[1] = 0x00202020;

 myNIBL.p2nib[0].macb[0] = 0x00000000;

 myNIBL.p2nib[0].macb[1] = 0xAA000500;

 myNIBL.p2nib[0].hexid = 0x341;

 myNIBL.p2nib[0].macb[0] |= 0x41000000;

 myNIBL.p2nib[0].macb[1] |= 0x00000003;

 myNIBL.p2nib[0].unit = 1;

 myNIBL.p2nib[0].macb[0] |= 0x00100000;

 myNIBL.p2nib[1].nname[0] = '2MPC';

 myNIBL.p2nib[1].nname[1] = 0x00202020;

 myNIBL.p2nib[1].macb[0] = 0x00000000;

 myNIBL.p2nib[1].macb[1] = 0xAA000500;

 myNIBL.p2nib[1].hexid = 0x341;

 myNIBL.p2nib[1].macb[0] |= 0x41000000;

 myNIBL.p2nib[1].macb[1] |= 0x00000003;

 myNIBL.p2nib[1].unit = 2;

 myNIBL.p2nib[1].macb[0] |= 0x00200000;

 printf("\n>> Number of nodes %d", myNIBL.nibcnt);

 for(i=0; i<myNIBL.nibcnt; i++)

 {

 printf("\n>> Node name '%s' Equipment ID = 0x%x Unit = %d MAC Base = %x %x", myNIBL.p2nib[i].nname,

myNIBL.p2nib[i].hexid, myNIBL.p2nib[i].unit, myNIBL.p2nib[i].macb[1], myNIBL.p2nib[i].macb[0]);

 }

 myCIB.cfgname[0] = 'TSET';

 myCIB.cfgname[1] = 0x00313030;

 myNIB = myNIBL.p2nib[0];

 myCIB.p2nib = &myNIB;

 printf("\n>> Configuration name '%s' Host NIB address = %x Host name from NIB List '%s' Host name from CIB '%s'",

myCIB.cfgname, myNIB, myNIB.nname, myCIB.p2nib->nname);

 return 0;

201

}

int fillCCBSIB()

{

 int i;

 myCCBL.ccbcnt = 1;

 myCCBL.ccbi[0].chnid = 1;

 myCCBL.ccbi[0].ssap = 114; // 0x72

 myCCBL.ccbi[0].dsap = 116; // 0x74

 myCCBL.ccbi[0].capacity = 90; // token bucket limit with 50% overdraft

 myCCBL.ccbi[0].tokens = 60; // token buckt initial filling equal 38 bytes of message + 22 bytes of LLCE header

 myCCBL.ccbi[0].rate = 30; // token bucket fill rate equal [].tokens/2

 myCCBL.ccbi[0].pid = 0;

 myCCBL.ccbi[0].sn = 0;

 myCCBL.ccbi[0].timestmp = 0;

 printf("\n>> Number of channels %d", myCCBL.ccbcnt);

 for(i=0; i<myCCBL.ccbcnt; i++)

 {

 printf("\n>> Channel position %d, ID = %d, SSAP = %d, DSAP = %d, Token Bucket capacity/tokens/rate [in

bytes/sec] = %d/%d/%d, PID = %x, SN = %d, Time-stamp = %d", i,

 myCCBL.ccbi[0].chnid,

 myCCBL.ccbi[0].ssap,

 myCCBL.ccbi[0].dsap,

 myCCBL.ccbi[0].capacity,

 myCCBL.ccbi[0].tokens,

 myCCBL.ccbi[0].rate,

 myCCBL.ccbi[0].pid,

 myCCBL.ccbi[0].sn,

 myCCBL.ccbi[0].timestmp);

 }

 mySIBL.sibcnt = 1;

202

 mySIBL.sibi[0].sap = 114;

 mySIBL.sibi[0].pid = 0;

 for(i=0; i<mySIBL.sibcnt; i++)

 {

 printf("\n>> Service position %d, SAP = %d, PID = %x", i,

 mySIBL.sibi[0].sap,

 mySIBL.sibi[0].pid);

 }

 return 0;

}

int fillSHB()

{

 int i;

 mySHB.shbcnt = 1;

 mySHB.filler = 0;

 mySHB.shbi[0].sapnumber = 116;

 mySHB.shbi[0].hostp2nib = &myNIBL.p2nib[1]; //NIB pointing to CPM2

 printf("\n>> Number of hosted services %d", mySHB.shbcnt);

 for(i=0; i<mySHB.shbcnt; i++)

 {

 printf("\n>> Hosted service position %d, SAP = %d, Host name from NIB '%s'", i,

 mySHB.shbi[i].sapnumber,

 mySHB.shbi[i].hostp2nib->nname);

 }

 return 0;

}

int fillPABL()

{

203

 int i;

 int j;

 PAB *tmpPAB;

 p1PAB.nibcnt = 1;

 p1PAB.filler = 0;

 p1PAB.pabi[0].p2nib = &myNIBL.p2nib[1]; //NIB pointing to CPM2

 p1PAB.pabi[0].hops = 0;

 for(i=0; i<p1PAB.nibcnt; i++)

 {

 printf("\n>> Port 1: hops = %d to node '%s' from NIB",

 p1PAB.pabi[i].hops,

 p1PAB.pabi[i].p2nib->nname);

 }

 myPABL.pabcnt = 1;

 myPABL.filler = 0;

 myPABL.pabli[0].port = 1;

 myPABL.pabli[0].p2pab = &p1PAB; //Port 1 to CPM2

 for(i=0; i<myPABL.pabcnt; i++)

 {

 tmpPAB = myPABL.pabli[i].p2pab;

 printf("\n...NIBs From PAB List...");

 for(j=0; j<tmpPAB->nibcnt; j++)

 {

 printf("\n>> Port %d: hops = %d to node '%s'",

 myPABL.pabli[i].port,

 tmpPAB->pabi[j].hops,

 tmpPAB->pabi[j].p2nib->nname);

 }

 }

 return 0;

204

}

int fillCBB()

{

 myCBB.cibb = &myCIB;

 myCBB.nibb = &myNIBL;

 myCBB.sibb = &mySIBL;

 myCBB.ccbb = &myCCBL;

 myCBB.shbb = &mySHB;

 myCBB.pabb = &myPABL;

 printf("\n>> Configuration name '%s' Host name from CIB '%s'", myCBB.cibb->cfgname, (myCBB.cibb->p2nib)->nname);

 return 0;

}

int initialize()

{

 int retcode;

 printf(">> Filling NIBs and CIB...");

 retcode = fillNIBCIB();

 printf("\n>> Filling CCBs and SIBs...");

 retcode = fillCCBSIB();

 printf("\n\n>> Filling SHBs...");

 retcode = fillSHB();

 printf("\n\n>> Filling PABs and PAB List...");

 retcode = fillPABL();

 printf("\n\n>> Filling CBB...");

 retcode = fillCBB();

 printf("\n\n>> End of initialize()...");

 return retcode;

205

}

/* --- initialize()--- */

/* --- */

/* --- */

/* --------------------------------------- CRC calculation --------------------------------------- */

// CRC parameters (values for CRC-32 Koopman G(x) = (x+1)(x3+x2+1)(x28+x22+x20+x19+x16+x14+x12+x9+x8+x6+1):

// CRC parameters (values for CRC-12 Koopman G(x) = x12 +x8 +x7 +x6 +x5 +x4 +1):

int order;

unsigned long polynom;

int direct;

unsigned long crcinit;

unsigned long crcxor;

int refin;

int refout;

// 'order' [1..32] is the CRC polynom order, counted without the leading '1' bit

// 'polynom' is the CRC polynom without leading '1' bit

// 'direct' [0,1] specifies the kind of algorithm: 1=direct, no augmented zero bits

// 'crcinit' is the initial CRC value belonging to that algorithm

// 'crcxor' is the final XOR value

// 'refin' [0,1] specifies if a data byte is reflected before processing (UART) or not

// 'refout' [0,1] specifies if the CRC will be reflected before XOR

// internal global values:

unsigned long crcmask;

unsigned long crchighbit;

unsigned long crcinit_direct;

unsigned long crcinit_nondirect;

// subroutines

unsigned long reflect (unsigned long crc, int bitnum)

{

206

 // reflects the lower 'bitnum' bits of 'crc'

 unsigned long i, j=1, crcout=0;

 for (i=(unsigned long)1<<(bitnum-1); i; i>>=1) {

 if (crc & i) crcout|=j;

 j<<= 1;

 }

 return (crcout);

}

unsigned long crcbitbybitfast(unsigned char* p, unsigned long len)

{

 // fast bit by bit algorithm without augmented zero bytes.

 // does not use lookup table, suited for polynom orders between 1...32.

 unsigned long i, j, c, bit;

 unsigned long crc = crcinit_direct;

 for (i=0; i<len; i++) {

 c = (unsigned long)*p++;

 if (refin) c = reflect(c, 8);

 for (j=0x80; j; j>>=1) {

 bit = crc & crchighbit;

 crc<<= 1;

 if (c & j) bit^= crchighbit;

 if (bit) crc^= polynom;

 }

 }

 if (refout) crc=reflect(crc, order);

 crc^= crcxor;

 crc&= crcmask;

207

 return (crc);

}

int setcrcparams(int input_order, unsigned long input_polynom, int input_direct, unsigned long input_crcinit,

unsigned long input_crcxor, int input_refin, int input_refout)

{

 // Test program for checking crcbitbybitfast().

 // Parameters are at the top of this program.

 // Result will be printed on the console.

 int i;

 unsigned long bit, crc;

 order = input_order;

 polynom = input_polynom;

 direct = input_direct;

 crcinit = input_crcinit;

 crcxor = input_crcxor;

 refin = input_refin;

 refout = input_refout;

 // at first, compute constant bit masks for whole CRC and CRC high bit

 crcmask = ((((unsigned long)1<<(order-1))-1)<<1)|1;

 crchighbit = (unsigned long)1<<(order-1);

 // compute missing initial CRC value

 if (!direct) {

 crcinit_nondirect = crcinit;

 crc = crcinit;

 for (i=0; i<order; i++) {

 bit = crc & crchighbit;

 crc<<= 1;

208

 if (bit) crc^= polynom;

 }

 crc&= crcmask;

 crcinit_direct = crc;

 }

 else {

 crcinit_direct = crcinit;

 crc = crcinit;

 for (i=0; i<order; i++) {

 bit = crc & 1;

 if (bit) crc^= polynom;

 crc >>= 1;

 if (bit) crc|= crchighbit;

 }

 crcinit_nondirect = crc;

 }

 return (0);

}

/* --------------------------------------- CRC calculation --------------------------------------- */

/* --- */

#define SUCCESS 0x10000001

#define NOTFOUND 0x10000010

#define NOTFREE 0x10000020

#define NOACCESS 0x10000030

#define UNKNOWN 0x10000040

#define OPENED 0x10000050

#define OPENSND 0x10000051

#define OPENRCV 0x10000053

#define BADSSAP 0x10000060

#define BADDSAP 0x10000070

209

#define BADBYTES 0x10000080

#define BADSEND 0x10000090

#define BADRECV 0x100000A0

#define NOTOKENS 0x100000B0

#define BADCRC12 0x100000C0

#define BADCRC32 0x100000D0

#define MINBYTES 34

#define MAXBYTES 1488

#define IEEEHDSIZE 14

#define UIHDSIZE 8

#define UICONTRL 3

#define CRC32SIZE 4

int GETPID(void)

{

 return 0xCC1;

}

int REGISTER(int mySAP, SIB **mySIB)

{

 int myPID;

 int i;

 for(i=0; i<mySIBL.sibcnt; i++)

 {

 printf("\n[REGISTER] Service position %d, SAP = %d, PID = 0x%x", i,

 mySIBL.sibi[i].sap,

 mySIBL.sibi[i].pid);

 if(mySIBL.sibi[i].sap == mySAP)

 {

 if(mySIBL.sibi[i].pid == 0)

 {

210

 myPID = GETPID();

 mySIBL.sibi[i].pid = myPID;

 *mySIB = &mySIBL.sibi[i];

 printf("\n[REGISTER] SAP %d is now registered to PID = 0x%x at SIB address 0x%x",

 (*mySIB)->sap,

 (*mySIB)->pid,

 *mySIB);

 return SUCCESS;

 } else

 {

 return NOTFREE;

 }

 }

 }

 return NOTFOUND;

}

int UNREGISTER(SIB **mySIB)

{

 int myPID;

 int i;

 for(i=0; i<mySIBL.sibcnt; i++)

 {

 printf("\n[UNREGISTER] Service position %d, SAP = %d, PID = 0x%x", i,

 (*mySIB)->sap,

 (*mySIB)->pid);

 if(&mySIBL.sibi[i] == *mySIB)

 {

 myPID = GETPID();

 if(mySIBL.sibi[i].pid == myPID)

 {

 mySIBL.sibi[i].pid = 0;

211

 printf("\n[UNREGISTER] SAP %d is now unregistered, PID = 0x%x",

 mySIBL.sibi[i].sap,

 mySIBL.sibi[i].pid);

 return SUCCESS;

 } else

 {

 return NOACCESS;

 }

 }

 }

 return NOTFOUND;

}

int OPEN(int chanID, int access, CCB **myCCB)

{

 int myPID;

 int mySAP;

 int i;

 int j;

 for(i=0; i<myCCBL.ccbcnt; i++)

 {

 if(myCCBL.ccbi[i].chnid == chanID)

 {

 if(myCCBL.ccbi[i].pid != 0) return OPENED;

 myPID = GETPID();

 for(j=0; j<mySIBL.sibcnt; j++)

 {

 if(mySIBL.sibi[j].pid == myPID)

 {

 mySAP = mySIBL.sibi[j].sap;

212

 if(access == OPENSND)

 {

 if(myCCBL.ccbi[j].ssap != mySAP) return BADSSAP;

 } else if(access == OPENRCV)

 {

 if(myCCBL.ccbi[j].dsap != mySAP) return BADDSAP;

 } else

 {

 return UNKNOWN;

 }

 myCCBL.ccbi[i].pid = myPID;

 *myCCB = &myCCBL.ccbi[j];

 printf("\n[OPEN] channel ID %d is now opened to PID = 0x%x",

 (*myCCB)->chnid,

 (*myCCB)->pid);

 return SUCCESS;

 }

 }

 return NOTFOUND;

 }

 }

 return NOTFOUND;

}

int CLOSE(CCB **myCCB)

{

 int myPID;

 int i;

 for(i=0; i<myCCBL.ccbcnt; i++)

 {

 if(&myCCBL.ccbi[i] == *myCCB)

 {

213

 myPID = GETPID();

 if(myCCBL.ccbi[i].pid == myPID)

 {

 myCCBL.ccbi[i].pid = 0;

 printf("\n[CLOSE] channel ID %d is now closed, PID = 0x%x",

 (*myCCB)->chnid,

 (*myCCB)->pid);

 return SUCCESS;

 } else

 {

 return NOACCESS;

 }

 }

 }

 return NOTFOUND;

}

#define min(x,y) (x < y ? x : y)

#define max(x,y) (x > y ? x : y)

void LLC_SEND(CCB *llcCCB, char *record, int llcLen,int *llcSent)

{

 int wrsize;

 size_t nbytes;

 unsigned short hlength;

 unsigned long hexheader;

 unsigned long timestamp;

 unsigned long CRC12;

 unsigned long CRC32;

 double deltaT;

 unsigned long tokens;

 unsigned long deltaTokens;

214

 struct tm* tmlocal;

 time_t tlocal;

 unsigned long secs_after_midnight;

 PAB *tmpPAB;

 unsigned long port;

 int tmp;

 int i,j;

 if(poutFile == NULL)

 {

 poutFile = fopen(outfile, "wba");

 pcap_hdr.magic_number = 0xa1b2c3d4;

 pcap_hdr.version_major = 2;

 pcap_hdr.version_minor = 4;

 pcap_hdr.thiszone = -3;

 pcap_hdr.sigfigs = 0;

 pcap_hdr.snaplen = 65535;

 pcap_hdr.network = 1;

 printf("\n\n magic number = 0x%x", pcap_hdr.magic_number);

 printf("\n major version number = %d", pcap_hdr.version_major);

 printf("\n minor version number = %d", pcap_hdr.version_minor);

 printf("\n GMT to local correction = %d", pcap_hdr.thiszone);

 printf("\n accuracy of timestamps = %d", pcap_hdr.sigfigs);

 printf("\n max length of captured packets,in octets = %d", pcap_hdr.snaplen);

 printf("\n data link type = %d", pcap_hdr.network);

 wrsize = sizeof(pcap_hdr);

 nbytes = fwrite(&pcap_hdr, 1, wrsize, poutFile);

 printf("\n[LLC_SEND] bytes written %d for new PCAP file header", nbytes);

 gettimeofday(&then, NULL);

215

 }

 gettimeofday(&now, NULL);

// do traffinc shaping on channel

 llcLen = max(llcLen,MINBYTES);

 tokens = llcLen + IEEEHDSIZE + UIHDSIZE + CRC32SIZE;

 if(llcCCB->tokens < llcCCB->capacity)

 {

 deltaT = (now.tv_sec - then.tv_sec) * 1e6;

 deltaT = (deltaT + (now.tv_usec - then.tv_usec)) * 1e-6;

 deltaTokens = llcCCB->rate * ((long) deltaT);

 llcCCB->tokens = min(llcCCB->capacity, (llcCCB->tokens + deltaTokens));

 }

 then = now;

 printf("\n tokens available = %d", llcCCB->tokens);

 if(tokens <= llcCCB->tokens)

 {

 llcCCB->tokens -= tokens;

 printf("\n tokens left = %d (bytes sent + LLCE header)", llcCCB->tokens);

 } else

 {

 *llcSent = -1; // NOTOKENS

 return;

 }

// return negative bytes sent to indicate insufficient tokens in bucket

 pcaprec_hdr.ts_sec = now.tv_sec;

 pcaprec_hdr.ts_usec = now.tv_usec;

 pcaprec_hdr.incl_len = sizeof(IEEE802UI) - MAXBYTES + llcLen;

 pcaprec_hdr.orig_len = pcaprec_hdr.incl_len;

216

 printf("\n\n timestamp seconds = %d (0x%x)", pcaprec_hdr.ts_sec, pcaprec_hdr.ts_sec);

 printf("\n timestamp microseconds = %d (0x%x)", pcaprec_hdr.ts_usec, pcaprec_hdr.ts_usec);

 printf("\n number of octets of packet to be saved in file = %d (0x%x)", pcaprec_hdr.incl_len,

pcaprec_hdr.incl_len);

 printf("\n actual length of packet = %d (0x%x)", pcaprec_hdr.orig_len, pcaprec_hdr.orig_len);

 wrsize = sizeof(pcaprec_hdr);

 nbytes = fwrite(&pcaprec_hdr, 1, wrsize, poutFile);

 printf("\n[LLC_SEND] bytes written %d for new PCAP record header", nbytes);

 myUI.smac[0] = (unsigned char)(((myCBB.cibb->p2nib)->macb[1] & 0xFF000000) >> 24);

 myUI.smac[1] = (unsigned char)(((myCBB.cibb->p2nib)->macb[1] & 0x00FF0000) >> 16);

 myUI.smac[2] = (unsigned char)(((myCBB.cibb->p2nib)->macb[1] & 0x0000FF00) >> 8);

 myUI.smac[3] = (unsigned char)(((myCBB.cibb->p2nib)->macb[1] & 0x000000FF));

 myUI.smac[4] = (unsigned char)(((myCBB.cibb->p2nib)->macb[0] & 0xFF000000) >> 24);

 myUI.smac[5] = (unsigned char)(((myCBB.cibb->p2nib)->macb[0] & 0x00FF0000) >> 16);

 for(i=0; i<mySHB.shbcnt; i++)

 {

 if(mySHB.shbi[i].sapnumber == llcCCB->dsap)

 printf("\n Host for service SAP = %d has MAC 0x%x %x",

 mySHB.shbi[i].sapnumber,

 mySHB.shbi[i].hostp2nib->macb[1], mySHB.shbi[i].hostp2nib->macb[0]);

 myUI.dmac[0] = (unsigned char)((mySHB.shbi[i].hostp2nib->macb[1] & 0xFF000000) >> 24);

 myUI.dmac[1] = (unsigned char)((mySHB.shbi[i].hostp2nib->macb[1] & 0x00FF0000) >> 16);

 myUI.dmac[2] = (unsigned char)((mySHB.shbi[i].hostp2nib->macb[1] & 0x0000FF00) >> 8);

 myUI.dmac[3] = (unsigned char)((mySHB.shbi[i].hostp2nib->macb[1] & 0x000000FF));

 myUI.dmac[4] = (unsigned char)((mySHB.shbi[i].hostp2nib->macb[0] & 0xFF000000) >> 24);

 myUI.dmac[5] = (unsigned char)((mySHB.shbi[i].hostp2nib->macb[0] & 0x00FF0000) >> 16);

 tmp = i;

 }

 port = 0;

 for(i=0; i<myPABL.pabcnt; i++)

217

 {

 tmpPAB = myPABL.pabli[i].p2pab;

 for(j=0; j<tmpPAB->nibcnt; j++)

 {

 if(tmpPAB->pabi[j].p2nib == mySHB.shbi[tmp].hostp2nib)

 {

 printf("\n[LLC_SEND} Port %d: hops = %d to node '%s' from PAB list and from SHB '%s'",

 myPABL.pabli[i].port,

 tmpPAB->pabi[j].hops,

 tmpPAB->pabi[j].p2nib->nname,

 mySHB.shbi[tmp].hostp2nib->nname);

 port = myPABL.pabli[i].port;

 break;

 }

 }

 if(port != 0) break;

 }

 myUI.smac[5] = myUI.smac[5] | port;

 printf("\n\n Source MAC= ");

 for(i = 0; i < 6; i++)

 {

 printf(" %x", myUI.smac[i]);

 }

 printf("\n Destination MAC =");

 for(i = 0; i < 6; i++)

 {

 printf(" %x", myUI.dmac[i]);

 }

 hlength = (short)(llcLen + UIHDSIZE + CRC32SIZE);

 bswap16((char*)&hlength);

 myUI.length = hlength;

 printf("\n UI length in network byte order = 0x%x", myUI.length);

218

 myUI.dsap = (unsigned char)llcCCB->dsap;

 myUI.ssap = (unsigned char)llcCCB->ssap;

 myUI.ctrl = UICONTRL;

 if(powerUP)

 {

 powerUP = FALSE;

 llcCCB->sn = 0;

 } else

 {

 if(llcCCB->sn == 255)

 {

 llcCCB->sn = 1;

 } else

 {

 (llcCCB->sn)++;

 }

 }

 myUI.sn = (unsigned char)llcCCB->sn;

 printf("\n DSAP = 0x%x", myUI.dsap);

 printf("\n SSAP = 0x%x", myUI.ssap);

 printf("\n CTRL = 0x%x", myUI.ctrl);

 printf("\n SN = 0x%x", myUI.sn);

 if(llcCCB->sn == 0)

 {

 tlocal = time(NULL);

 tmlocal = localtime(&tlocal);

 secs_after_midnight = (unsigned long)(tmlocal->tm_hour*3600 + tmlocal->tm_min*60 + tmlocal->tm_sec);

 timestamp = (secs_after_midnight & 0x000FFFFF);

 printf("\n time stamp is seconds after midnight %d", timestamp);

 } else

 {

 timestamp = (now.tv_usec & 0x000FFFFF);

 printf("\n time stamp is microseconds after second %d", timestamp);

219

 }

 llcCCB->timestmp = timestamp;

 printf("\n UI time stamp = 0x%x", timestamp);

 hexheader = timestamp << 12;

 bswap32((char*)&hexheader);

 memcpy(&myUI.exheader, &hexheader, 4);

 setcrcparams(12, 0x1F1, 1, 0xFFF, 0x0, 0, 0);

 CRC12 = crcbitbybitfast((unsigned char *)&(myUI.dsap), 7);

 printf("\n UI CRC12 = 0x%x", CRC12);

 bswap32((char*)&hexheader);

 hexheader = (hexheader | CRC12);

 bswap32((char*)&hexheader);

 memcpy(&myUI.exheader, &hexheader, 4);

 printf("\n Extended header = 0x%x %x %x %x in network order", myUI.exheader[0], myUI.exheader[1],

myUI.exheader[2], myUI.exheader[3]);

 memcpy(myUI.data, record, llcLen);

 setcrcparams(32, 0x741B8CD7, 1, 0xFFFFFFFF, 0x0, 0, 0);

 CRC32 = crcbitbybitfast((unsigned char *)record, llcLen);

 printf("\n UI CRC32 = 0x%x", CRC32);

 bswap32((char*)&CRC32);

 memcpy(&(myUI.data[llcLen]), &CRC32, CRC32SIZE);

 printf("\n[LLC_SEND] Channel ID = %d, SSAP = %d, DSAP = %d, capacity = %d, tokens = %d, rate = %d bytes/sec, PID =

0x%x, SN = %d, Time-stamp = %d",

 llcCCB->chnid,

 llcCCB->ssap,

 llcCCB->dsap,

 llcCCB->capacity,

 llcCCB->tokens,

 llcCCB->rate,

 llcCCB->pid,

220

 llcCCB->sn,

 llcCCB->timestmp);

 nbytes = fwrite(&myUI, 1, pcaprec_hdr.incl_len, poutFile);

 printf("\n\n[LLC_SEND] bytes written %d for new PCAP record data", nbytes);

 *llcSent = llcLen;

 printf("\n[LLC_SEND] length = %d, xmited = %d", llcLen, *llcSent);

}

int SEND(CCB **myCCB, char* buffer, int nbytes, int *xbytes)

{

 int myPID;

 int i;

 int goodCCB = 0;

 for(i=0; i<myCCBL.ccbcnt; i++)

 {

 if(&myCCBL.ccbi[i] == *myCCB)

 {

 myPID = GETPID();

 if(myCCBL.ccbi[i].pid != myPID) return NOACCESS;

 goodCCB = i;

 }

 }

 if(goodCCB == MAXCCB) return NOACCESS;

 if(nbytes > MAXBYTES) return BADBYTES;

 printf("\n[SEND] Calling LLC_SEND");

 LLC_SEND(&myCCBL.ccbi[goodCCB], buffer, nbytes, xbytes);

 if(*xbytes < 0) return NOTOKENS;

 if(*xbytes != nbytes) return BADSEND;

221

 return SUCCESS;

}

int STATUS(int chanID, unsigned long *chn_ssap, unsigned long *chn_dsap, unsigned long *chn_capacity, unsigned long

*chn_tokens, unsigned long *chn_rate,

 unsigned long *chn_pid, unsigned long *chn_sn, unsigned long *chn_timestmp)

{

 int i;

 for(i=0; i<myCCBL.ccbcnt; i++)

 {

 if(myCCBL.ccbi[i].chnid == chanID)

 {

 *chn_ssap = myCCBL.ccbi[i].ssap;

 *chn_dsap = myCCBL.ccbi[i].dsap;

 *chn_capacity = myCCBL.ccbi[i].capacity;

 *chn_tokens = myCCBL.ccbi[i].tokens;

 *chn_rate = myCCBL.ccbi[i].rate;

 *chn_pid = myCCBL.ccbi[i].pid;

 *chn_sn = myCCBL.ccbi[i].sn;

 *chn_timestmp = myCCBL.ccbi[i].timestmp;

 return SUCCESS;

 }

 }

 return NOTFOUND;

}

int main()

{

 int cpm1_SAP;

 int cpm1_chn;

 int cpm1_acc;

 int retcode;

 SIB *cpm1_SIB;

 CCB *cpm1_CCB;

222

 cpm1_SAP = 114;

 cpm1_chn = 1;

 cpm1_acc = OPENSND;

 unsigned long chn_id;

 unsigned long chn_ssap;

 unsigned long chn_dsap;

 unsigned long chn_capacity;

 unsigned long chn_tokens;

 unsigned long chn_rate;

 unsigned long chn_pid;

 unsigned long chn_sn;

 unsigned long chn_timestmp;

 size_t msize;

 int length;

 int xmited = 0;

 char message[MINBYTES];

 int i;

// calling "initialize()" not needed in real life..

 retcode = initialize();

 printf("\n\n>> Entering main()...");

 printf("\n>> Registering CPM1 to SAP %d", cpm1_SAP);

 retcode = REGISTER(cpm1_SAP, &cpm1_SIB);

 if(retcode == SUCCESS)

 {

 printf("\n\n>> CPM1 SAP %d is now registered to PID = 0x%x",

 cpm1_SIB->sap,

 cpm1_SIB->pid);

 } else

223

 {

 printf("\n>> bad code 0x%x", retcode);

 }

 printf("\n>> Opening channel ID %d for access 0x%x", cpm1_chn, cpm1_acc);

 retcode = OPEN(cpm1_chn, cpm1_acc, &cpm1_CCB);

 if(retcode == SUCCESS)

 {

 printf("\n\n>> Channel ID %d is now open",

 cpm1_CCB->chnid);

 } else

 {

 printf("\n>> bad code 0x%x", retcode);

 }

 for(i = 0; i<MINBYTES; i++)

 {

 message[i] = i+1;

 }

 msize = strlen(message);

 length = (int)msize;

 printf("\n\n>> Sending message with %d bytes", length);

 retcode = SEND(&cpm1_CCB, message, length, &xmited);

 printf("\n return code 0x%x, tokens = %d", retcode, cpm1_CCB->tokens);

 sleep(3);

 printf("\n\n>> Sending message with %d bytes", length);

 retcode = SEND(&cpm1_CCB, message, length, &xmited);

 printf("\n return code 0x%x, tokens = %d", retcode, cpm1_CCB->tokens);

224

 sleep(1);

 printf("\n\n>> Sending message with %d bytes", length);

 retcode = SEND(&cpm1_CCB, message, length, &xmited);

 printf("\n return code 0x%x, tokens = %d", retcode, cpm1_CCB->tokens);

 retcode = STATUS(cpm1_chn, &chn_ssap, &chn_dsap, &chn_capacity, &chn_tokens, &chn_rate, &chn_pid, &chn_sn,

&chn_timestmp);

 printf("\n\n>> Status of channel ID = %d, SSAP = %d, DSAP = %d, Token Bucket capacity/tokens/rate [in bytes/sec] =

%d/%d/%d, PID = %x, SN = %d, Time-stamp = %d",

 cpm1_chn,

 chn_ssap,

 chn_dsap,

 chn_capacity,

 chn_tokens,

 chn_rate,

 chn_pid,

 chn_sn,

 chn_timestmp);

 printf("\n\n>> Closing channel ID %d", cpm1_chn);

 retcode = CLOSE(&cpm1_CCB);

 if(retcode == SUCCESS)

 {

 printf("\n\n>> Channel ID %d is now closed",

 cpm1_CCB->chnid);

 } else

 {

 printf("\n>> bad code 0x%x", retcode);

 }

 printf("\n\n>> Unregistering SAP %d from CPM1", cpm1_SAP);

225

 retcode = UNREGISTER(&cpm1_SIB);

 if(retcode == SUCCESS)

 {

 printf("\n\n>> CPM1 SAP %d is now unregistered (PID = 0x%x)",

 cpm1_SIB->sap,

 cpm1_SIB->pid);

 } else

 {

 printf("\n>> bad code 0x%x", retcode);

 }

 return 0;

}

226

D.2 Source code for the CPM2 module

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <unistd.h>

#include <string.h>

#include "chndef.h"

#include "pcap.h"

#include "IEEE802UI.h"

NIBL myNIBL;

CIB myCIB;

NIB myNIB;

CCBL myCCBL;

SIBL mySIBL;

SHB mySHB;

PAB p1PAB;

PABL myPABL;

CBB myCBB;

pcap_hdr_t pcap_hdr;

pcaprec_hdr_t pcaprec_hdr;

IEEE802UI myUI;

char infile[] = "UI.pcap";

FILE *pinFile = NULL;

227

struct timeval now;

struct timeval then;

double difsec;

long prvusec;

long difusec;

#define FALSE 0

#define TRUE !(FALSE)

void bswap16(char *input)

{

 unsigned char tmp;

 tmp = input[1];

 input[1] = input[0];

 input[0] = tmp;

}

void bswap32(char *input)

{

 unsigned char tmp;

 tmp = input[0];

 input[0] = input[3];

 input[3] = tmp;

 tmp = input[1];

 input[1] = input[2];

 input[2] = tmp;

}

/* --- */

/* --- initialize()--- */

int fillNIBCIB()

{

228

 int i;

 myNIBL.nibcnt = 2;

 myNIBL.p2nib[0].nname[0] = '2MPC';

 myNIBL.p2nib[0].nname[1] = 0x00202020;

 myNIBL.p2nib[0].macb[0] = 0x00000000;

 myNIBL.p2nib[0].macb[1] = 0xAA000500;

 myNIBL.p2nib[0].hexid = 0x341;

 myNIBL.p2nib[0].macb[0] |= 0x41000000;

 myNIBL.p2nib[0].macb[1] |= 0x00000003;

 myNIBL.p2nib[0].unit = 2;

 myNIBL.p2nib[0].macb[0] |= 0x00200000;

 myNIBL.p2nib[1].nname[0] = '1MPC';

 myNIBL.p2nib[1].nname[1] = 0x00202020;

 myNIBL.p2nib[1].macb[0] = 0x00000000;

 myNIBL.p2nib[1].macb[1] = 0xAA000500;

 myNIBL.p2nib[1].hexid = 0x341;

 myNIBL.p2nib[1].macb[0] |= 0x41000000;

 myNIBL.p2nib[1].macb[1] |= 0x00000003;

 myNIBL.p2nib[1].unit = 1;

 myNIBL.p2nib[1].macb[0] |= 0x00100000;

 printf("\n>> Number of nodes %d", myNIBL.nibcnt);

 for(i=0; i<myNIBL.nibcnt; i++)

 {

 printf("\n>> Node name '%s' Equipment ID = 0x%x Unit = %d MAC Base = %x %x", myNIBL.p2nib[i].nname,

myNIBL.p2nib[i].hexid, myNIBL.p2nib[i].unit, myNIBL.p2nib[i].macb[1], myNIBL.p2nib[i].macb[0]);

 }

 myCIB.cfgname[0] = 'TSET';

 myCIB.cfgname[1] = 0x00313030;

 myNIB = myNIBL.p2nib[0];

 myCIB.p2nib = &myNIB;

229

 printf("\n>> Configuration name '%s' Host NIB address = %x Host name from NIB List '%s' Host name from CIB '%s'",

myCIB.cfgname, myNIB, myNIB.nname, myCIB.p2nib->nname);

 return 0;

}

int fillCCBSIB()

{

 int i;

 myCCBL.ccbcnt = 1;

 myCCBL.ccbi[0].chnid = 1;

 myCCBL.ccbi[0].ssap = 114; // 0x72

 myCCBL.ccbi[0].dsap = 116; // 0x74

 myCCBL.ccbi[0].capacity = 90; // token bucket limit with 50% overdraft

 myCCBL.ccbi[0].tokens = 60; // token buckt initial filling equal 38 bytes of message + 22 bytes of LLCE header

 myCCBL.ccbi[0].rate = 30; // token bucket fill rate equal [].tokens/2

 myCCBL.ccbi[0].pid = 0;

 myCCBL.ccbi[0].sn = 0;

 myCCBL.ccbi[0].timestmp = 0;

 printf("\n>> Number of channels %d", myCCBL.ccbcnt);

 for(i=0; i<myCCBL.ccbcnt; i++)

 {

 printf("\n>> Channel position %d, ID = %d, SSAP = %d, DSAP = %d, Token Bucket capacity/tokens/rate [in

bytes/sec] = %d/%d/%d, PID = %x, SN = %d, Time-stamp = %d", i,

 myCCBL.ccbi[0].chnid,

 myCCBL.ccbi[0].ssap,

 myCCBL.ccbi[0].dsap,

 myCCBL.ccbi[0].capacity,

 myCCBL.ccbi[0].tokens,

 myCCBL.ccbi[0].rate,

 myCCBL.ccbi[0].pid,

 myCCBL.ccbi[0].sn,

 myCCBL.ccbi[0].timestmp);

230

 }

 mySIBL.sibcnt = 1;

 mySIBL.sibi[0].sap = 116;

 mySIBL.sibi[0].pid = 0;

 for(i=0; i<mySIBL.sibcnt; i++)

 {

 printf("\n>> Service position %d, SAP = %d, PID = %x", i,

 mySIBL.sibi[0].sap,

 mySIBL.sibi[0].pid);

 }

 return 0;

}

int fillSHB()

{

 int i;

 mySHB.shbcnt = 1;

 mySHB.filler = 0;

 mySHB.shbi[0].sapnumber = 114;

 mySHB.shbi[0].hostp2nib = &myNIBL.p2nib[1]; //NIB pointing to CPM1

 printf("\n>> Number of hosted services %d", mySHB.shbcnt);

 for(i=0; i<mySHB.shbcnt; i++)

 {

 printf("\n>> Hosted service position %d, SAP = %d, Host name from NIB '%s'", i,

 mySHB.shbi[i].sapnumber,

 mySHB.shbi[i].hostp2nib->nname);

 }

 return 0;

231

}

int fillPABL()

{

 int i;

 int j;

 PAB *tmpPAB;

 p1PAB.nibcnt = 1;

 p1PAB.filler = 0;

 p1PAB.pabi[0].p2nib = &myNIBL.p2nib[1]; //NIB pointing to CPM1

 p1PAB.pabi[0].hops = 0;

 for(i=0; i<p1PAB.nibcnt; i++)

 {

 printf("\n>> Port 1: hops = %d to node '%s' from NIB",

 p1PAB.pabi[i].hops,

 p1PAB.pabi[i].p2nib->nname);

 }

 myPABL.pabcnt = 1;

 myPABL.filler = 0;

 myPABL.pabli[0].port = 1;

 myPABL.pabli[0].p2pab = &p1PAB; //Port 1 to CPM1

 for(i=0; i<myPABL.pabcnt; i++)

 {

 tmpPAB = myPABL.pabli[i].p2pab;

 printf("\n...NIBs From PAB List...");

 for(j=0; j<tmpPAB->nibcnt; j++)

 {

 printf("\n>> Port %d: hops = %d to node '%s'",

 myPABL.pabli[i].port,

 tmpPAB->pabi[j].hops,

 tmpPAB->pabi[j].p2nib->nname);

232

 }

 }

 return 0;

}

int fillCBB()

{

 myCBB.cibb = &myCIB;

 myCBB.nibb = &myNIBL;

 myCBB.sibb = &mySIBL;

 myCBB.ccbb = &myCCBL;

 myCBB.shbb = &mySHB;

 myCBB.pabb = &myPABL;

 printf("\n>> Configuration name '%s' Host name from CIB '%s'", myCBB.cibb->cfgname, (myCBB.cibb->p2nib)->nname);

 return 0;

}

int initialize()

{

 int retcode;

 printf(">> Filling NIBs and CIB...");

 retcode = fillNIBCIB();

 printf("\n>> Filling CCBs and SIBs...");

 retcode = fillCCBSIB();

 printf("\n\n>> Filling SHBs...");

 retcode = fillSHB();

 printf("\n\n>> Filling PABs and PAB List...");

 retcode = fillPABL();

 printf("\n\n>> Filling CBB...");

233

 retcode = fillCBB();

 printf("\n\n>> End of initialize()...");

 return retcode;

}

/* --- initialize()--- */

/* --- */

/* --- */

/* --------------------------------------- CRC calculation --------------------------------------- */

// CRC parameters (values for CRC-32 Koopman G(x) = (x+1)(x3+x2+1)(x28+x22+x20+x19+x16+x14+x12+x9+x8+x6+1):

// CRC parameters (values for CRC-12 Koopman G(x) = x12 +x8 +x7 +x6 +x5 +x4 +1):

int order;

unsigned long polynom;

int direct;

unsigned long crcinit;

unsigned long crcxor;

int refin;

int refout;

// 'order' [1..32] is the CRC polynom order, counted without the leading '1' bit

// 'polynom' is the CRC polynom without leading '1' bit

// 'direct' [0,1] specifies the kind of algorithm: 1=direct, no augmented zero bits

// 'crcinit' is the initial CRC value belonging to that algorithm

// 'crcxor' is the final XOR value

// 'refin' [0,1] specifies if a data byte is reflected before processing (UART) or not

// 'refout' [0,1] specifies if the CRC will be reflected before XOR

// internal global values:

unsigned long crcmask;

unsigned long crchighbit;

unsigned long crcinit_direct;

unsigned long crcinit_nondirect;

// subroutines

234

unsigned long reflect (unsigned long crc, int bitnum)

{

 // reflects the lower 'bitnum' bits of 'crc'

 unsigned long i, j=1, crcout=0;

 for (i=(unsigned long)1<<(bitnum-1); i; i>>=1) {

 if (crc & i) crcout|=j;

 j<<= 1;

 }

 return (crcout);

}

unsigned long crcbitbybitfast(unsigned char* p, unsigned long len)

{

 // fast bit by bit algorithm without augmented zero bytes.

 // does not use lookup table, suited for polynom orders between 1...32.

 unsigned long i, j, c, bit;

 unsigned long crc = crcinit_direct;

 for (i=0; i<len; i++) {

 c = (unsigned long)*p++;

 if (refin) c = reflect(c, 8);

 for (j=0x80; j; j>>=1) {

 bit = crc & crchighbit;

 crc<<= 1;

 if (c & j) bit^= crchighbit;

 if (bit) crc^= polynom;

 }

 }

235

 if (refout) crc=reflect(crc, order);

 crc^= crcxor;

 crc&= crcmask;

 return (crc);

}

int setcrcparams(int input_order, unsigned long input_polynom, int input_direct, unsigned long input_crcinit,

unsigned long input_crcxor, int input_refin, int input_refout)

{

 // Test program for checking crcbitbybitfast().

 // Parameters are at the top of this program.

 // Result will be printed on the console.

 int i;

 unsigned long bit, crc;

 order = input_order;

 polynom = input_polynom;

 direct = input_direct;

 crcinit = input_crcinit;

 crcxor = input_crcxor;

 refin = input_refin;

 refout = input_refout;

 // at first, compute constant bit masks for whole CRC and CRC high bit

 crcmask = ((((unsigned long)1<<(order-1))-1)<<1)|1;

 crchighbit = (unsigned long)1<<(order-1);

 // compute missing initial CRC value

 if (!direct) {

 crcinit_nondirect = crcinit;

 crc = crcinit;

236

 for (i=0; i<order; i++) {

 bit = crc & crchighbit;

 crc<<= 1;

 if (bit) crc^= polynom;

 }

 crc&= crcmask;

 crcinit_direct = crc;

 }

 else {

 crcinit_direct = crcinit;

 crc = crcinit;

 for (i=0; i<order; i++) {

 bit = crc & 1;

 if (bit) crc^= polynom;

 crc >>= 1;

 if (bit) crc|= crchighbit;

 }

 crcinit_nondirect = crc;

 }

 return (0);

}

/* --------------------------------------- CRC calculation --------------------------------------- */

/* --- */

#define SUCCESS 0x10000001

#define NOTFOUND 0x10000010

#define NOTFREE 0x10000020

#define NOACCESS 0x10000030

#define UNKNOWN 0x10000040

#define OPENED 0x10000050

237

#define OPENSND 0x10000051

#define OPENRCV 0x10000053

#define BADSSAP 0x10000060

#define BADDSAP 0x10000070

#define BADBYTES 0x10000080

#define BADSEND 0x10000090

#define BADRECV 0x100000A0

#define NOTOKENS 0x100000B0

#define BADCRC12 0x100000C0

#define BADCRC32 0x100000D0

#define MINBYTES 34

#define MAXBYTES 1488

#define IEEEHDSIZE 14

#define UIHDSIZE 8

#define UICONTRL 3

#define CRC32SIZE 4

int GETPID(void)

{

 return 0xCC2;

}

int REGISTER(int mySAP, SIB **mySIB)

{

 int myPID;

 int i;

 for(i=0; i<mySIBL.sibcnt; i++)

 {

 printf("\n[REGISTER] Service position %d, SAP = %d, PID = 0x%x", i,

 mySIBL.sibi[i].sap,

 mySIBL.sibi[i].pid);

238

 if(mySIBL.sibi[i].sap == mySAP)

 {

 if(mySIBL.sibi[i].pid == 0)

 {

 myPID = GETPID();

 mySIBL.sibi[i].pid = myPID;

 *mySIB = &mySIBL.sibi[i];

 printf("\n[REGISTER] SAP %d is now registered to PID = 0x%x at SIB address 0x%x",

 (*mySIB)->sap,

 (*mySIB)->pid,

 *mySIB);

 return SUCCESS;

 } else

 {

 return NOTFREE;

 }

 }

 }

 return NOTFOUND;

}

int UNREGISTER(SIB **mySIB)

{

 int myPID;

 int i;

 for(i=0; i<mySIBL.sibcnt; i++)

 {

 printf("\n[UNREGISTER] Service position %d, SAP = %d, PID = 0x%x", i,

 (*mySIB)->sap,

 (*mySIB)->pid);

 if(&mySIBL.sibi[i] == *mySIB)

 {

239

 myPID = GETPID();

 if(mySIBL.sibi[i].pid == myPID)

 {

 mySIBL.sibi[i].pid = 0;

 printf("\n[UNREGISTER] SAP %d is now unregistered, PID = 0x%x",

 mySIBL.sibi[i].sap,

 mySIBL.sibi[i].pid);

 return SUCCESS;

 } else

 {

 return NOACCESS;

 }

 }

 }

 return NOTFOUND;

}

int OPEN(int chanID, int access, CCB **myCCB)

{

 int myPID;

 int mySAP;

 int i;

 int j;

 for(i=0; i<myCCBL.ccbcnt; i++)

 {

 if(myCCBL.ccbi[i].chnid == chanID)

 {

 if(myCCBL.ccbi[i].pid != 0) return OPENED;

 myPID = GETPID();

 for(j=0; j<mySIBL.sibcnt; j++)

 {

240

 if(mySIBL.sibi[j].pid == myPID)

 {

 mySAP = mySIBL.sibi[j].sap;

 if(access == OPENSND)

 {

 if(myCCBL.ccbi[j].ssap != mySAP) return BADSSAP;

 } else if(access == OPENRCV)

 {

 if(myCCBL.ccbi[j].dsap != mySAP) return BADDSAP;

 } else

 {

 return UNKNOWN;

 }

 myCCBL.ccbi[i].pid = myPID;

 *myCCB = &myCCBL.ccbi[j];

 printf("\n[OPEN] channel ID %d is now opened to PID = 0x%x",

 (*myCCB)->chnid,

 (*myCCB)->pid);

 return SUCCESS;

 }

 }

 return NOTFOUND;

 }

 }

 return NOTFOUND;

}

int CLOSE(CCB **myCCB)

{

 int myPID;

 int i;

241

 for(i=0; i<myCCBL.ccbcnt; i++)

 {

 if(&myCCBL.ccbi[i] == *myCCB)

 {

 myPID = GETPID();

 if(myCCBL.ccbi[i].pid == myPID)

 {

 myCCBL.ccbi[i].pid = 0;

 printf("\n[CLOSE] channel ID %d is now closed, PID = 0x%x",

 (*myCCB)->chnid,

 (*myCCB)->pid);

 return SUCCESS;

 } else

 {

 return NOACCESS;

 }

 }

 }

 return NOTFOUND;

}

#define min(x,y) (x < y ? x : y)

#define max(x,y) (x > y ? x : y)

void LLC_RECEIVE(CCB *llcCCB, char *record, int llcLen,int *llcRecvd)

{

 int rdsize;

 size_t nbytes;

 unsigned short hlength;

 unsigned long hexheader;

 unsigned char fulheader[8];

 unsigned long timestamp;

 unsigned long CRC12;

242

 unsigned long ckdCRC12;

 unsigned long CRC32;

 unsigned long ckdCRC32;

 double deltaT;

 unsigned long tokens;

 unsigned long deltaTokens;

 struct tm* tmlocal;

 time_t tlocal;

 long secs_after_midnight;

 PAB *tmpPAB;

 int i,j;

 if(pinFile == NULL)

 {

 pinFile = fopen(infile, "rb");

 if(pinFile == NULL)

 {

 printf("\n[LLC_RECEIVE] PCAP file not found");

 exit(NOTFOUND);

 }

 rdsize = sizeof(pcap_hdr);

 nbytes = fread(&pcap_hdr, 1, rdsize, pinFile);

 printf("\n[LLC_RECEIVE] bytes read %d for PCAP file header", nbytes);

 printf("\n\n magic number = 0x%x", pcap_hdr.magic_number);

 printf("\n major version number = %d", pcap_hdr.version_major);

 printf("\n minor version number = %d", pcap_hdr.version_minor);

 printf("\n GMT to local correction = %d", pcap_hdr.thiszone);

 printf("\n accuracy of timestamps = %d", pcap_hdr.sigfigs);

 printf("\n max length of captured packets,in octets = %d", pcap_hdr.snaplen);

 printf("\n data link type = %d", pcap_hdr.network);

243

 gettimeofday(&then, NULL);

 prvusec = 0;

 }

 gettimeofday(&now, NULL);

// do traffinc policing on channel

 tokens = llcLen + IEEEHDSIZE + UIHDSIZE + CRC32SIZE;

 if(llcCCB->tokens < llcCCB->capacity)

 {

 difsec = now.tv_sec - then.tv_sec;

 deltaT = (now.tv_sec - then.tv_sec) * 1e6;

 deltaT = (deltaT + (now.tv_usec - then.tv_usec)) * 1e-6;

 deltaTokens = llcCCB->rate * ((long) deltaT);

 llcCCB->tokens = min(llcCCB->capacity, (llcCCB->tokens + deltaTokens));

 }

 then = now;

 printf("\n tokens available = %d", llcCCB->tokens);

 if(tokens <= llcCCB->tokens)

 {

 llcCCB->tokens -= tokens;

 printf("\n tokens left = %d (bytes sent + LLCE header)", llcCCB->tokens);

 } else

 {

 *llcRecvd = -1; // NOTOKENS

 return;

 }

// return negative bytes sent to indicate insufficient tokens in bucket

 rdsize = sizeof(pcaprec_hdr);

244

 nbytes = fread(&pcaprec_hdr, 1, rdsize, pinFile);

 printf("\n[LLC_RECEIVE] bytes read %d from PCAP record header", nbytes);

 printf("\n\n timestamp seconds = %d (0x%x)", pcaprec_hdr.ts_sec, pcaprec_hdr.ts_sec);

 printf("\n timestamp microseconds = %d (0x%x)", pcaprec_hdr.ts_usec, pcaprec_hdr.ts_usec);

 printf("\n number of octets of packet saved in file = %d (0x%x)", pcaprec_hdr.incl_len, pcaprec_hdr.incl_len);

 printf("\n actual length of packet = %d (0x%x)", pcaprec_hdr.orig_len, pcaprec_hdr.orig_len);

 nbytes = fread(&myUI, 1, pcaprec_hdr.incl_len, pinFile);

 printf("\n\n[LLC_RECEIVE] bytes read %d from PCAP record data", nbytes);

 printf("\n\n Source MAC= ");

 for(i = 0; i < 6; i++)

 {

 printf(" %x", myUI.smac[i]);

 }

 printf("\n Destination MAC =");

 for(i = 0; i < 6; i++)

 {

 printf(" %x", myUI.dmac[i]);

 }

 hlength = myUI.length;

 bswap16((char*)&hlength);

 printf("\n UI length = 0x%x", hlength);

 memcpy(&hexheader, &myUI.exheader, 4);

 bswap32((char*)&hexheader);

 CRC12 = hexheader & 0x00000FFF;

 memcpy(&fulheader, &myUI.dsap, 8);

 fulheader[6] = fulheader[6] & 0xF0;

 fulheader[7] = 0;

 setcrcparams(12, 0x1F1, 1, 0xFFF, 0x0, 0, 0);

 ckdCRC12 = crcbitbybitfast(&fulheader, 7);

245

 if(CRC12 != ckdCRC12)

 {

 printf("\n[LLC_RECEIVE] bad CRC12");

 *llcRecvd = 0;

 return;

 }

 printf("\n UI CRC12 = 0x%x", CRC12);

 setcrcparams(32, 0x741B8CD7, 1, 0xFFFFFFFF, 0x0, 0, 0);

 ckdCRC32 = crcbitbybitfast((unsigned char *)&(myUI.data[0]), (llcLen+CRC32SIZE));

 if(ckdCRC32 != 0)

 {

 printf("\n[LLC_RECEIVE] bad CRC32");

 *llcRecvd = 0;

 return;

 }

 memcpy(&CRC32, &(myUI.data[llcLen]), CRC32SIZE);

 bswap32((char*)&CRC32);

 printf("\n UI CRC32 = 0x%x", CRC32);

 memcpy(record, myUI.data, llcLen);

 printf("\n DSAP = 0x%x", myUI.dsap);

 printf("\n SSAP = 0x%x", myUI.ssap);

 printf("\n CTRL = 0x%x", myUI.ctrl);

 printf("\n SN = 0x%x", myUI.sn);

 printf("\n Extended header = 0x%x %x %x %x in network order", myUI.exheader[0], myUI.exheader[1],

myUI.exheader[2], myUI.exheader[3]);

 timestamp = hexheader >> 12;

 printf("\n UI time stamp = %d (0x%x)", timestamp, timestamp);

246

 if(myUI.sn == 0)

 {

 tlocal = time(NULL);

 tmlocal = localtime(&tlocal);

 secs_after_midnight = (long)(tmlocal->tm_hour*3600 + tmlocal->tm_min*60 + tmlocal->tm_sec);

 printf("\n time stamp is seconds after midnight (apparent offset to remote clock = %d +ahead/-behind)",

(secs_after_midnight - (long)timestamp));

 } else

 {

 printf("\n delta time in seconds for traffic policing = %f", deltaT);

 if(prvusec != 0)

 {

 difusec = timestamp - prvusec;

 difsec = difsec + (difusec)*1e-6;

 printf("\n estimated delta time in seconds at origin = %f", difsec);

 } else

 {

 prvusec = timestamp;

 }

 }

 llcCCB->timestmp = timestamp;

 llcCCB->sn = myUI.sn;

 *llcRecvd = llcLen;

 printf("\n[LLC_RECEIVE] length = %d, received = %d", llcLen, *llcRecvd);

}

int RECEIVE(CCB **myCCB, char* buffer, int nbytes, int *xbytes)

{

 int myPID;

 int i;

 int goodCCB = 0;

 for(i=0; i<myCCBL.ccbcnt; i++)

247

 {

 if(&myCCBL.ccbi[i] == *myCCB)

 {

 myPID = GETPID();

 if(myCCBL.ccbi[i].pid != myPID) return NOACCESS;

 goodCCB = i;

 }

 }

 if(goodCCB == MAXCCB) return NOACCESS;

 if(nbytes > MAXBYTES) return BADBYTES;

 printf("\n[RECEIVE] Calling LLC_RECEIVE");

 LLC_RECEIVE(&myCCBL.ccbi[goodCCB], buffer, nbytes, xbytes);

 if(*xbytes < 0) return NOTOKENS;

 if(*xbytes != nbytes) return BADRECV;

 return SUCCESS;

}

int STATUS(int chanID, unsigned long *chn_ssap, unsigned long *chn_dsap, unsigned long *chn_capacity, unsigned long

*chn_tokens, unsigned long *chn_rate,

 unsigned long *chn_pid, unsigned long *chn_sn, unsigned long *chn_timestmp)

{

 int i;

 for(i=0; i<myCCBL.ccbcnt; i++)

 {

 if(myCCBL.ccbi[i].chnid == chanID)

 {

 *chn_ssap = myCCBL.ccbi[i].ssap;

 *chn_dsap = myCCBL.ccbi[i].dsap;

 *chn_capacity = myCCBL.ccbi[i].capacity;

 *chn_tokens = myCCBL.ccbi[i].tokens;

248

 *chn_rate = myCCBL.ccbi[i].rate;

 *chn_pid = myCCBL.ccbi[i].pid;

 *chn_sn = myCCBL.ccbi[i].sn;

 *chn_timestmp = myCCBL.ccbi[i].timestmp;

 return SUCCESS;

 }

 }

 return NOTFOUND;

}

int main()

{

 int cpm2_SAP;

 int cpm2_chn;

 int cpm2_acc;

 int retcode;

 SIB *cpm2_SIB;

 CCB *cpm2_CCB;

 cpm2_SAP = 116;

 cpm2_chn = 1;

 cpm2_acc = OPENRCV;

 unsigned long chn_id;

 unsigned long chn_ssap;

 unsigned long chn_dsap;

 unsigned long chn_capacity;

 unsigned long chn_tokens;

 unsigned long chn_rate;

 unsigned long chn_pid;

 unsigned long chn_sn;

 unsigned long chn_timestmp;

 size_t msize;

 int length;

 int receivd = 0;

249

 char message[MINBYTES];

 struct timeval prvTime;

 struct timeval aftTime;

 struct timespec nanoTime;

 int i;

// calling "initialize()" not needed in real life..

 retcode = initialize();

 printf("\n\n>> Entering main()...");

 printf("\n>> Registering CPM1 to SAP %d", cpm2_SAP);

 retcode = REGISTER(cpm2_SAP, &cpm2_SIB);

 if(retcode == SUCCESS)

 {

 printf("\n\n>> CPM2 SAP %d is now registered to PID = 0x%x",

 cpm2_SIB->sap,

 cpm2_SIB->pid);

 } else

 {

 printf("\n>> bad code 0x%x", retcode);

 }

 printf("\n>> Opening channel ID %d for access 0x%x", cpm2_chn, cpm2_acc);

 retcode = OPEN(cpm2_chn, cpm2_acc, &cpm2_CCB);

 if(retcode == SUCCESS)

 {

 printf("\n\n>> Channel ID %d is now open",

 cpm2_CCB->chnid);

 } else

 {

250

 printf("\n>> bad code 0x%x", retcode);

 }

 for(i = 0; i<MINBYTES; i++)

 {

 message[i] = 0xFF;

 }

 msize = strlen(message);

 length = (int)msize;

 printf("\n\n>> Receiving message with %d bytes", length);

 gettimeofday(&prvTime, NULL);

 retcode = RECEIVE(&cpm2_CCB, message, length, &receivd);

 printf("\n return code 0x%x, tokens = %d", retcode, cpm2_CCB->tokens);

 printf("\n\n>> Receiving message with %d bytes", length);

 gettimeofday(&aftTime, NULL);

 nanoTime.tv_nsec = 0;

 nanoTime.tv_sec = 3;

// nanoTime.tv_nsec = (1005000L - aftTime.tv_usec + prvTime.tv_usec)*1000;

// nanoTime.tv_sec = 2;

 nanosleep(&nanoTime, (struct timespec *)NULL);

 gettimeofday(&prvTime, NULL);

 retcode = RECEIVE(&cpm2_CCB, message, length, &receivd);

 printf("\n return code 0x%x, tokens = %d", retcode, cpm2_CCB->tokens);

 printf("\n\n>> Receiving message with %d bytes", length);

 gettimeofday(&aftTime, NULL);

 nanoTime.tv_nsec = 0;

 nanoTime.tv_sec = 1;

251

 nanosleep(&nanoTime, (struct timespec *)NULL);

 retcode = RECEIVE(&cpm2_CCB, message, length, &receivd);

 printf("\n return code 0x%x, tokens = %d", retcode, cpm2_CCB->tokens);

 retcode = STATUS(cpm2_chn, &chn_ssap, &chn_dsap, &chn_capacity, &chn_tokens, &chn_rate, &chn_pid, &chn_sn,

&chn_timestmp);

 printf("\n\n>> Status of channel ID = %d, SSAP = %d, DSAP = %d, Token Bucket capacity/tokens/rate [in bytes/sec] =

%d/%d/%d, PID = %x, SN = %d, Time-stamp = %d",

 cpm2_chn,

 chn_ssap,

 chn_dsap,

 chn_capacity,

 chn_tokens,

 chn_rate,

 chn_pid,

 chn_sn,

 chn_timestmp);

 printf("\n\n>> Closing channel ID %d", cpm2_chn);

 retcode = CLOSE(&cpm2_CCB);

 if(retcode == SUCCESS)

 {

 printf("\n\n>> Channel ID %d is now closed",

 cpm2_CCB->chnid);

 } else

 {

 printf("\n>> bad code 0x%x", retcode);

 }

 printf("\n\n>> Unregistering SAP %d from CPM2", cpm2_SAP);

 retcode = UNREGISTER(&cpm2_SIB);

252

 if(retcode == SUCCESS)

 {

 printf("\n\n>> CPM2 SAP %d is now unregistered (PID = 0x%x)",

 cpm2_SIB->sap,

 cpm2_SIB->pid);

 } else

 {

 printf("\n>> bad code 0x%x", retcode);

 }

 return 0;

}

253

APPENDIX E – TEST CASE FULL TEXT OUTPUTS

The full text output by the CPM1 and CPM2 modules developed while running

the test case are copied in the next two sections.

E.1 Full text output for module CPM1

>> Filling NIBs and CIB...

>> Number of nodes 2

>> Node name 'CPM1 ' Equipment ID = 0x341 Unit = 1 MAC Base = aa000503

41100000

>> Node name 'CPM2 ' Equipment ID = 0x341 Unit = 2 MAC Base = aa000503

41200000

>> Configuration name 'TEST001' Host NIB address = 63fcc0 Host name from NIB

List 'CPM1 ' Host name from CIB 'CPM1 '

>> Filling CCBs and SIBs...

>> Number of channels 1

>> Channel position 0, ID = 1, SSAP = 114, DSAP = 116, Token Bucket

capacity/tokens/rate [in bytes/sec] = 90/60/30, PID = 0, SN = 0, Time-stamp =

0

>> Service position 0, SAP = 114, PID = 0

>> Filling SHBs...

>> Number of hosted services 1

>> Hosted service position 0, SAP = 116, Host name from NIB 'CPM2 '

>> Filling PABs and PAB List...

>> Port 1: hops = 0 to node 'CPM2 ' from NIB

...NIBs From PAB List...

>> Port 1: hops = 0 to node 'CPM2 '

>> Filling CBB...

>> Configuration name 'TEST001' Host name from CIB 'CPM1 '

>> End of initialize()...

>> Entering main()...

>> Registering CPM1 to SAP 114

[REGISTER] Service position 0, SAP = 114, PID = 0x0

[REGISTER] SAP 114 is now registered to PID = 0xcc1 at SIB address 0x40bb44

>> CPM1 SAP 114 is now registered to PID = 0xcc1

>> Opening channel ID 1 for access 0x10000051

[OPEN] channel ID 1 is now opened to PID = 0xcc1

>> Channel ID 1 is now open

>> Sending message with 34 bytes

[SEND] Calling LLC_SEND

 magic number = 0xa1b2c3d4

 major version number = 2

 minor version number = 4

 GMT to local correction = -3

 accuracy of timestamps = 0

 max length of captured packets,in octets = 65535

 data link type = 1

[LLC_SEND] bytes written 24 for new PCAP file header

 tokens available = 60

 tokens left = 0 (bytes sent + LLCE header)

 timestamp seconds = 1606821301 (0x5fc625b5)

 timestamp microseconds = 200500 (0x30f34)

 number of octets of packet to be saved in file = 60 (0x3c)

 actual length of packet = 60 (0x3c)

254

[LLC_SEND] bytes written 16 for new PCAP record header

 Host for service SAP = 116 has MAC 0xaa000503 41200000

[LLC_SEND} Port 1: hops = 0 to node 'CPM2 ' from PAB list and from SHB 'CPM2

'

 Source MAC= aa 0 5 3 41 11

 Destination MAC = aa 0 5 3 41 20

 UI length in network byte order = 0x2e00

 DSAP = 0x74

 SSAP = 0x72

 CTRL = 0x3

 SN = 0x0

 time stamp is seconds after midnight 29701

 UI time stamp = 0x7405

 UI CRC12 = 0xf8c

 Extended header = 0x7 40 5f 8c in network order

 UI CRC32 = 0x840feafa

[LLC_SEND] Channel ID = 1, SSAP = 114, DSAP = 116, capacity = 90, tokens = 0,

rate = 30 bytes/sec, PID = 0xcc1, SN = 0, Time-stamp = 29701

[LLC_SEND] bytes written 60 for new PCAP record data

[LLC_SEND] length = 34, xmited = 34

 return code 0x10000001, tokens = 0

>> Sending message with 34 bytes

[SEND] Calling LLC_SEND

 tokens available = 90

 tokens left = 30 (bytes sent + LLCE header)

 timestamp seconds = 1606821304 (0x5fc625b8)

 timestamp microseconds = 231280 (0x38770)

 number of octets of packet to be saved in file = 60 (0x3c)

 actual length of packet = 60 (0x3c)

[LLC_SEND] bytes written 16 for new PCAP record header

 Host for service SAP = 116 has MAC 0xaa000503 41200000

[LLC_SEND} Port 1: hops = 0 to node 'CPM2 ' from PAB list and from SHB 'CPM2

'

 Source MAC= aa 0 5 3 41 11

 Destination MAC = aa 0 5 3 41 20

 UI length in network byte order = 0x2e00

 DSAP = 0x74

 SSAP = 0x72

 CTRL = 0x3

 SN = 0x1

 time stamp is microseconds after second 231280

 UI time stamp = 0x38770

 UI CRC12 = 0x8b3

 Extended header = 0x38 77 8 b3 in network order

 UI CRC32 = 0x840feafa

[LLC_SEND] Channel ID = 1, SSAP = 114, DSAP = 116, capacity = 90, tokens = 30,

rate = 30 bytes/sec, PID = 0xcc1, SN = 1, Time-stamp = 231280

[LLC_SEND] bytes written 60 for new PCAP record data

[LLC_SEND] length = 34, xmited = 34

 return code 0x10000001, tokens = 30

>> Sending message with 34 bytes

[SEND] Calling LLC_SEND

 tokens available = 60

 tokens left = 0 (bytes sent + LLCE header)

 timestamp seconds = 1606821305 (0x5fc625b9)

 timestamp microseconds = 246672 (0x3c390)

 number of octets of packet to be saved in file = 60 (0x3c)

 actual length of packet = 60 (0x3c)

[LLC_SEND] bytes written 16 for new PCAP record header

 Host for service SAP = 116 has MAC 0xaa000503 41200000

255

[LLC_SEND} Port 1: hops = 0 to node 'CPM2 ' from PAB list and from SHB 'CPM2

'

 Source MAC= aa 0 5 3 41 11

 Destination MAC = aa 0 5 3 41 20

 UI length in network byte order = 0x2e00

 DSAP = 0x74

 SSAP = 0x72

 CTRL = 0x3

 SN = 0x2

 time stamp is microseconds after second 246672

 UI time stamp = 0x3c390

 UI CRC12 = 0xd6c

 Extended header = 0x3c 39 d 6c in network order

 UI CRC32 = 0x840feafa

[LLC_SEND] Channel ID = 1, SSAP = 114, DSAP = 116, capacity = 90, tokens = 0,

rate = 30 bytes/sec, PID = 0xcc1, SN = 2, Time-stamp = 246672

[LLC_SEND] bytes written 60 for new PCAP record data

[LLC_SEND] length = 34, xmited = 34

 return code 0x10000001, tokens = 0

>> Status of channel ID = 1, SSAP = 114, DSAP = 116, Token Bucket

capacity/tokens/rate [in bytes/sec] = 90/0/30, PID = cc1, SN = 2, Time-stamp =

246672

>> Closing channel ID 1

[CLOSE] channel ID 1 is now closed, PID = 0x0

>> Channel ID 1 is now closed

>> Unregistering SAP 114 from CPM1

[UNREGISTER] Service position 0, SAP = 114, PID = 0xcc1

[UNREGISTER] SAP 114 is now unregistered, PID = 0x0

>> CPM1 SAP 114 is now unregistered (PID = 0x0)

E.2 Full text output for module CPM2

>> Filling NIBs and CIB...

>> Number of nodes 2

>> Node name 'CPM2 ' Equipment ID = 0x341 Unit = 2 MAC Base = aa000503

41200000

>> Node name 'CPM1 ' Equipment ID = 0x341 Unit = 1 MAC Base = aa000503

41100000

>> Configuration name 'TEST001' Host NIB address = 63fc90 Host name from NIB

List 'CPM2 ' Host name from CIB 'CPM2 '

>> Filling CCBs and SIBs...

>> Number of channels 1

>> Channel position 0, ID = 1, SSAP = 114, DSAP = 116, Token Bucket

capacity/tokens/rate [in bytes/sec] = 90/60/30, PID = 0, SN = 0, Time-stamp =

0

>> Service position 0, SAP = 116, PID = 0

>> Filling SHBs...

>> Number of hosted services 1

>> Hosted service position 0, SAP = 114, Host name from NIB 'CPM1 '

>> Filling PABs and PAB List...

>> Port 1: hops = 0 to node 'CPM1 ' from NIB

...NIBs From PAB List...

>> Port 1: hops = 0 to node 'CPM1 '

>> Filling CBB...

>> Configuration name 'TEST001' Host name from CIB 'CPM2 '

256

>> End of initialize()...

>> Entering main()...

>> Registering CPM1 to SAP 116

[REGISTER] Service position 0, SAP = 116, PID = 0x0

[REGISTER] SAP 116 is now registered to PID = 0xcc2 at SIB address 0x412c44

>> CPM2 SAP 116 is now registered to PID = 0xcc2

>> Opening channel ID 1 for access 0x10000053

[OPEN] channel ID 1 is now opened to PID = 0xcc2

>> Channel ID 1 is now open

>> Receiving message with 34 bytes

[RECEIVE] Calling LLC_RECEIVE

[LLC_RECEIVE] bytes read 24 for PCAP file header

 magic number = 0xa1b2c3d4

 major version number = 2

 minor version number = 4

 GMT to local correction = -3

 accuracy of timestamps = 0

 max length of captured packets,in octets = 65535

 data link type = 1

 tokens available = 60

 tokens left = 0 (bytes sent + LLCE header)

[LLC_RECEIVE] bytes read 16 from PCAP record header

 timestamp seconds = 1606821301 (0x5fc625b5)

 timestamp microseconds = 200500 (0x30f34)

 number of octets of packet saved in file = 60 (0x3c)

 actual length of packet = 60 (0x3c)

[LLC_RECEIVE] bytes read 60 from PCAP record data

 Source MAC= aa 0 5 3 41 11

 Destination MAC = aa 0 5 3 41 20

 UI length = 0x2e

 UI CRC12 = 0xf8c

 UI CRC32 = 0x840feafa

 DSAP = 0x74

 SSAP = 0x72

 CTRL = 0x3

 SN = 0x0

 Extended header = 0x7 40 5f 8c in network order

 UI time stamp = 29701 (0x7405)

 time stamp is seconds after midnight (apparent offset to remote clock =

120 +ahead/-behind)

[LLC_RECEIVE] length = 34, received = 34

 return code 0x10000001, tokens = 0

>> Receiving message with 34 bytes

[RECEIVE] Calling LLC_RECEIVE

 tokens available = 90

 tokens left = 30 (bytes sent + LLCE header)

[LLC_RECEIVE] bytes read 16 from PCAP record header

 timestamp seconds = 1606821304 (0x5fc625b8)

 timestamp microseconds = 231280 (0x38770)

 number of octets of packet saved in file = 60 (0x3c)

 actual length of packet = 60 (0x3c)

[LLC_RECEIVE] bytes read 60 from PCAP record data

 Source MAC= aa 0 5 3 41 11

 Destination MAC = aa 0 5 3 41 20

 UI length = 0x2e

 UI CRC12 = 0x8b3

257

 UI CRC32 = 0x840feafa

 DSAP = 0x74

 SSAP = 0x72

 CTRL = 0x3

 SN = 0x1

 Extended header = 0x38 77 8 b3 in network order

 UI time stamp = 231280 (0x38770)

 delta time in seconds for traffic policing = 3.015157

[LLC_RECEIVE] length = 34, received = 34

 return code 0x10000001, tokens = 30

>> Receiving message with 34 bytes

[RECEIVE] Calling LLC_RECEIVE

 tokens available = 60

 tokens left = 0 (bytes sent + LLCE header)

[LLC_RECEIVE] bytes read 16 from PCAP record header

 timestamp seconds = 1606821305 (0x5fc625b9)

 timestamp microseconds = 246672 (0x3c390)

 number of octets of packet saved in file = 60 (0x3c)

 actual length of packet = 60 (0x3c)

[LLC_RECEIVE] bytes read 60 from PCAP record data

 Source MAC= aa 0 5 3 41 11

 Destination MAC = aa 0 5 3 41 20

 UI length = 0x2e

 UI CRC12 = 0xd6c

 UI CRC32 = 0x840feafa

 DSAP = 0x74

 SSAP = 0x72

 CTRL = 0x3

 SN = 0x2

 Extended header = 0x3c 39 d 6c in network order

 UI time stamp = 246672 (0x3c390)

 delta time in seconds for traffic policing = 1.015389

 estimated delta time in seconds at origin = 1.015392

[LLC_RECEIVE] length = 34, received = 34

 return code 0x10000001, tokens = 0

>> Status of channel ID = 1, SSAP = 114, DSAP = 116, Token Bucket

capacity/tokens/rate [in bytes/sec] = 90/0/30, PID = cc2, SN = 2, Time-stamp =

246672

>> Closing channel ID 1

[CLOSE] channel ID 1 is now closed, PID = 0x0

>> Channel ID 1 is now closed

>> Unregistering SAP 116 from CPM2

[UNREGISTER] Service position 0, SAP = 116, PID = 0xcc2

[UNREGISTER] SAP 116 is now unregistered, PID = 0x0

>> CPM2 SAP 116 is now unregistered (PID = 0x0)

	COVER
	VERSUS

	TITLE PAGE

	INDEX CARD

	APPROVAL TERM

	DEDICATORY

	ACKNOWLEDGEMENTS
	ABSTRACT
	RESUMO
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ACRONYMS AND ABBREVIATIONS
	SUMMARY
	1 INTRODUCTION
	1.1 Context and motivation
	1.2 Objective
	1.3 Originality, generality and usefulness
	1.4 Organization

	2 BASIC CONCEPTS AND LITERATURE REVIEW
	2.1 Basic concepts and industry standards
	2.1.1 Computer network architectures
	2.1.2 The ISO/OSI layered communication model
	2.1.3 IEEE 802.3 standard for ethernet
	2.1.4 IEEE 802.2 logical link control
	2.1.5 Internet Protocol (IP)

	2.2 Embedded networks
	2.2.1 Data producers and data consumers
	2.2.2 Essential services in embedded networks
	2.2.3 Essential characteristics of embedded network protocols

	2.3 Digital Communication Protocols
	2.3.1 ARINC-429
	2.3.2 ARINC-664 Part 7 (AFDXTM)
	2.3.3 SpaceWire
	2.3.4 MIL-STD-1553B
	2.3.5 Serial communication
	2.3.6 Shared medium
	2.3.7 Time-triggered

	2.4 Comparing digital communication protocols

	3 PROBLEM STATEMENT AND APPROACH TO A SOLUTION
	3.1 High-level approach used for developing the Internet Protocol
	3.2 Problem statement
	3.3 Approach to solving the current problem

	4 KEY OBJECTIVES FOR THE NEW PROTOCOL AND SERVICES
	4.1 Connect data producers to data consumers
	4.2 Support mixed topologies
	4.3 Provide timing information
	4.4 Provide payload and header data integrity
	4.5 Provide routing validation
	4.6 Provide an operating system interface
	4.7 Protocol specification breakdown
	4.8 Side-by-side comparison

	
5 PROTOCOL SPECIFICATION
	5.1 Specification of the new UI and TEST Protocol Data Units (PDUs)
	5.1.1 IEEE 802.3 MAC source and unicast destination address formatting
	5.1.2 IEEE 802.3 MAC destination multicast address formatting
	5.1.3 IEEE 802.3 MAC destination broadcast address
	5.1.4 IEEE 802.3 length field
	5.1.5 IEEE 802.2 DSAP and SSAP fields
	5.1.6 IEEE 802.2 control field
	5.1.7 Extended header for DSAP sequence number (UI PDUs)
	5.1.8 Extended header for hop count (TEST PDUs)
	5.1.9 Extended header for time-stamping and header-CRC (UI PDUs)
	5.1.10 New payload CRC (UI PDUs)
	5.1.11 Unique characteristic of the new data link layer protocol

	5.2 Specification of the associated services on UI PDUs
	5.2.1 Data validation
	5.2.2 Introducing the concept of “channel”
	5.2.3 Traffic shaping
	5.2.4 Traffic policing
	5.2.5 Taking into account transmission delays
	5.2.6 Summary of protocol services for UI PDUs on network nodes

	5.3 Routing validation using TEST PDUs
	5.3.1 Definition of static routes
	5.3.2 Route validation
	5.3.3 Sample route validation on a star network topology
	5.3.4 Sample route validation on a point-to-point network topology

	5.4 Specification of the operating system interface to the protocol layers
	5.4.1 Network node configuration file
	5.4.2 In-memory data structures
	5.4.3 Channel Application Programming Interface
	5.4.4 Route testing programming model
	5.4.5 UI and TEST PDU routing programming model
	5.4.6 Network traffic switching

	6 EXPERIMENTAL RESULTS USING THE CONCEPT OF “CHANNEL”
	6.1 Introduction
	6.2 Scenario for the test case
	6.3 Network topology
	6.4 Network nodes configuration
	6.5 Channel configuration
	6.6 Test case description
	6.6.1 Role of node CPM1
	6.6.2 Role of node CPM2
	6.6.3 Test case illustrated
	6.6.4 Configurarion files
	6.6.5 Implementation details
	6.6.6 CPM1 application source code (extract)
	6.6.7 CPM1 application output commented
	6.6.8 CPM2 application source code (extract)
	6.6.9 CPM2 application output commented
	6.6.10 Frame validation using wireshark generic dissector

	6.7 Summary

	7 CONCLUSIONS, CONTRIBUTIONS AND SUGGESTIONS
	7.1 Conclusions
	7.2 Summary of contributions
	7.3 Suggestions for further studies

	BIBLIOGRAFIC REFERENCES
	APPENDIX A – A NEW METHOD FOR ESTIMATING WORST CASE TRANSMISSION DELAY IN SWITCHED ETHERNET NETWORKS
	APPENDIX B – CONFIGURING A WIRESHARK GENERIC DISSECTOR
	APPENDIX C – NODE CONFIGURATION FILES
	APPENDIX D – SOURCE CODE LISTINGS
	APPENDIX E – TEST CASE FULL TEXT OUTPUTS

