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Abstract: Sea surface temperature (SST) is an essential climate variable used for ocean and weather
monitoring and forecasting. The NOAA’s next generation geostationary satellite GOES-16 was
declared operational at the east position (75◦W) in December 2017, carrying onboard an Advanced
Baseline Imager (ABI). The hyperspectral ABI sensor now allows SST estimates every 10–15 min at
both day and nighttime, with advanced options for cloud screening and water vapor correction. In
the present work, we compare the first operational ABI SST product (OSI SAF, 2018) with an in situ
match-up database (MDB) across the Tropical and Southwestern Atlantic Ocean, off the Brazilian
coast, throughout the year of 2018. The MDB was obtained from two long-term programs, i.e.,
PIRATA moored buoys (FOLTZ et al., 2016) and PNBoia moored and drifting buoys (MARINHA
DO BRASIL, 2017). Separate comparisons were made for each data set, analyzing the uncertainties
according to the program (i.e., buoy type and region), satellite SST quality level and influence of
diurnal heating. We also compare the ABI product with the OSTIA analysis L4 SST (DONLON et al.,
2012) to increment our analyses on the spatio-temporal biases within the study region. The results
show that the OSI SAF ABI SST L3C has a mean bias (0.1 ◦C) and error (RMSE, 0.5 ◦C) within the
GHRSST standards, with an exception being coastal waters off the southeast Brazilian coast (RMSE,
0.65 ◦C), which are subjected to sharp thermal fronts. The highest biases are for regions/seasons
subjected to persistent cloud coverage and high water-vapor content, i.e., the Intertropical and
South Atlantic Convergence Zones, as well as highly dynamic frontal zones, i.e., the Brazil Malvinas
Confluence Zone, the Subtropical Front and coastal waters. The ABI SST product is suitable for
operational use, and applications should explore more deeply the new set of information provided.

Keywords: SST; ABI/GOES-16; South Atlantic Ocean

1. Introduction

The sea surface temperature (SST) is an important regulator of several ocean–atmosphere
interaction processes, such as the exchange of heat, water, gas and momentum between
the atmosphere and the ocean [1]. SST influences not only the ocean–atmosphere interface,
but also higher levels of the boundary layer and even the troposphere, being an important
essential climate variable (ECV) [2]. Precise and accurate SST measurements, both in long
time series and in Near Real Time (NRT) products are thus essential for environmental
studies and the operational monitoring and forecast of the ocean, weather and climate [2,3].
With the evolution of orbital remote sensing, radiometric instruments onboard geostation-
ary and polar satellites have become essential to monitor and collect information from areas
that are not covered by in situ data collection programs, especially in the open ocean [4]
and in the Southern Hemisphere.

SST satellite products are generated from the brightness temperature (BT) measured
by thermal infrared or microwave sensors, at atmospheric window channels (with mini-
mum atmospheric gas absorption), and converted into SST by means of algorithms that
combine external sources of information, using radiative transfer equations [5,6], empirical
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regression analysis [7–9] or even machine learning techniques [10]. Such algorithms, in
general, offer accurate SST estimates in global analyses [2,11]. At the regional and local
levels, however, there are a number of factors that can generate higher uncertainties, such
as greater effects of the absorption of water vapor and aerosols [12,13]. On a global scale,
the desired accuracy for SST is a maximum bias of 0.5 ◦C in time scales of less than one day
and resolution of at least 10 km [11]. At the regional and local levels, the required accuracy
is even higher (0.2 ◦C) [14] to ensure the accurate detection of mesoscale and submesoscale
processes [3].

One of the newest SST products released for operational use is from the NOAA’s
next generation Geostationary Operational Environmental Satellites, GOES-16, launched
in 2016, and declared operational at the East position (75◦W) in December 2017, covering
the American continent and the adjacent eastern Pacific and western Atlantic oceans.
The GOES-16’s mission is to provide timely, high-quality, relevant information for meteo-
oceanographic monitoring over the Americas and adjacent oceans. The hyperspectral
Advanced Baseline Imager (ABI) onboard GOES-16 provides Full Disk imaging every
10–15 min in 16 channels from the visible to thermal infrared spectral region at 0.5- to
2-km resolution. This sensor allows the determination of SST for each cloud-free pixel
over water during the entire diurnal cycle, with advanced options for cloud screening and
water vapor correction [12,15,16]. The previous Imager (on board GOES-13, and others)
only allowed nighttime SST estimates with limited accuracy. Such new information of the
diurnal cycle and high resolution spatio-temporal processes should bring about advances
in the monitoring and study of meteorological and oceanographic phenomena, especially
in highly dynamic regions [3]. In the South Atlantic, some processes that may gain insights
from such information are the role of sharp thermal fronts modulating the boundary layer,
especially within the Brazil-Malvinas Confluence Zone (BMC) [17] and coastal upwelling
cells [18], development of maritime-coastal fogs, marine thunderstorms, sea breezes and
lines of instability, among others. The operational use in data assimilation systems is
also expected to improve ocean-weather forecasts in the region. This, however, demands
high-quality data products which should be evaluated and characterized in terms of levels
and sources of uncertainty before use.

At the same time, the ABI/GOES-16 SST product provides higher temporal resolution
information compared to other products, e.g., from polar-orbiting satellites; however, it may
also have higher levels of uncertainty, which is inherent to geostationary satellite sensors.
There are currently two operational ABI SST products under the GHRSST standards, i.e.,
one from the NOAA Center for Satellite Applications and Research (STAR) group and
another from the EUMETSAT Sea Ice Satellite Applications Facility (OSI SAF) group. The
OSI SAF ABI SST (L3) [16] was the first to be declared operational, whereas the NOAA
STAR product underwent a couple of updates and reformulations before operational
release [12,15].

The purpose of this work is to characterize the uncertainties of the ABI/GOES-16 SST
product by comparing it with standard SST measurements and products over the Tropical
and Southwestern Atlantic Ocean. The ABI/GOES-16 SST OSI SAF L3C product, hereafter
referred to as SSTsat, was chosen for this study as it was the first to be declared operational.
The SSTsat was compared to an in situ match-up database (MDB) collected over the study
region throughout an entire yearly cycle (2018). The MDB was obtained from fixed and
drifting buoys of two long-term programs: the Prediction and Research Moored Array in
the Tropical Atlantic (PIRATA) [19] and the National Buoy Program (Programa Nacional de
Boias, PNBoia) [20]. A comparison was also made with a standard SST analysis L4 product,
i.e., OSTIA, to identify regions and/or periods with greater uncertainty across the entire
Tropical and Southwestern Atlantic Ocean. The NOAA Geo-Polar Blended SST analysis
product was also used for comparison, but since the results were very similar to those from
the OSTIA comparison, the latter was selected to show the results for this study.
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Study Region

The study region was defined to cover the Tropical and Southwestern Atlantic from
65◦W to 20◦W and 10◦N to 45◦S. The spatio-temporal variability of the SST in the study
region was relatively high, varying from approximately 5–15 ◦C (monthly average) in
the Southern most sector (>35◦S) during the austral winter (July–August), to 25–35 ◦C
(monthly average) in the Tropical Atlantic (10◦S–10◦N) (Figure 1).

Some meteorological and oceanographic features and processes that are important
for this study region, with potential impacts on the SST satellite retrievals, are indicated in
Figure 1. There are two atmospheric convergence zones that form persistent cloudy bands,
i.e., the Intertropical Convergence Zone (ITCZ) and the South Atlantic Convergence Zone
(SACZ) [21]. The ITCZ is formed by the convergence of trade winds and has a southward
displacement during the austral summer (December–February) (~1◦N) and northward shift
during the austral winter (June–August) (~8◦N) [22]. The SACZ occurs generally in the
austral summer and is related to several conditions including the northward displacement
of the South Atlantic Subtropical High, that allows cloudy and rainy conditions to actuate
over Southeast Brazil. The cloudy band of the SACZ usually extends from the southern
Amazon to central-eastern Brazil, and the adjacent South Atlantic Ocean, and lasts for at
least five days [23].

In terms of the hydrography, the study region encompasses the Brazilian western
boundary current, which is a poleward current that transports warm tropical waters near
the Brazilian shelf break, and encounters the northward Falklands/Malvinas Current
(MC), which transports cold Subantarctic waters, at the Brazil-Malvinas Confluence Zone
(BMC) [24,25]. The southernmost sector of the study region is also characterized by the
South Atlantic Subtropical Front (STF) which forms the boundary between subtropical
and subpolar waters [26]. The BMC and the STF are both highly dynamic regions with
sharp thermal fronts, and have an equatorward displacement during the austral winter
and poleward shift during the austral summer, varying from ~30–45◦S (Figure 1B) (note
that the study region encompasses only part of the STF).Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 17 

 

 
Figure 1. Monthly means MODIS-Aqua SST of March (A) and August (B) 2018, indicating the 
mean position of the ITCZ [22] and SACZ [23], and oceanic currents and fronts (adapted from 
[26]); and the average SST for the entire study region throughout 2018 (C). 

2. Data 
2.1. Match-up Data Base (MDB) 

The moored buoys of the PIRATA program are located at the Tropical Atlantic, 
whereas the PNBoia program has coastal moored buoys off the Brazilian coast and drift-
ing buoys across the Southern Atlantic. For both programs, only the buoys within the 
study region were selected, making, in total, seven PIRATA buoys, four PNBoia moored 
buoys and several drifting buoys (Figure 2). 

 

Figure 1. Monthly means MODIS-Aqua SST of March (A) and August (B) 2018, indicating the mean
position of the ITCZ [22] and SACZ [23], and oceanic currents and fronts (adapted from [26]); and
the average SST for the entire study region throughout 2018 (C).
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2. Data
2.1. Match-up Data Base (MDB)

The moored buoys of the PIRATA program are located at the Tropical Atlantic, whereas
the PNBoia program has coastal moored buoys off the Brazilian coast and drifting buoys
across the Southern Atlantic. For both programs, only the buoys within the study region
were selected, making, in total, seven PIRATA buoys, four PNBoia moored buoys and
several drifting buoys (Figure 2).Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 17 
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Figure 2. Study region indicating the location of the moored and drifting buoys used for the match-up
data base.

2.1.1. PIRATA Project

The PIRATA project is an observation system founded in the mid-1990s for the Tropical
Atlantic Ocean, composed mainly of moored buoys [19]. The project is a partnership
between Brazil, France and the United States, with the purpose of studying the ocean–
atmosphere interactions in the Tropical Atlantic that affect climatic variability. The data
are collected and stored at 10-minute intervals, with public availability for daily averages
transmitted to the Argos satellite system and distributed through GTS. The in situ SST
(SSTdepth) is measured at 10 depth levels from 1 m to 500 m. For our purposes, daily
averages collected at 1 m were selected. Auxiliary data of wind speed are also available and
were used to compare the SST data without (>6 m.s−1) influence of diurnal heating [27].

2.1.2. PNBoia Project

As a complement to the PIRATA project, Brazil implemented a network of meteoro-
logical buoys to contribute to Brazil’s Global Ocean Observing System (GOOS-BRASIL;
www.goosbrasil.org), including the Programa Nacional de Boias (PNBoia) [20]. The program
started in December 1999, providing meteorological and oceanographic data in the Tropical
and Southwest Atlantic Ocean, remedying the lack of data in the region (which is still
limited), with 21 moored buoys (ATLAS) on the coast and 297 drifting buoys deposited
in the South Atlantic (many of which have already been disabled). For the present study,
we were able to obtain data only from four moored buoys located near the southeastern
Brazilian coast, as well as from the drifting buoys in the Southern Atlantic (Figure 2). The
data has public availability for hourly averages, but is collected randomly (not temporally

www.goosbrasil.org
www.goosbrasil.org
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continuous). For the moored buoys, SSTdepth is collected at 1 m, and for the drifting buoys,
at 0.2 m. Wind speed was not available in this case, so the data set was separated in terms
of “all conditions” and “only nighttime” to analyze the influence of diurnal heating.

2.2. Satellite SST
2.2.1. ABI GOES-16 SST

The ABI sensor, onboard GOES-16 (GOES-East, at 75◦W) has a field of view centered
at the Eastern region of the Americas, covering from 60◦N to 60◦S, and 135◦W to 15◦W.
This hyperspectral sensor performs Full Disk imaging every 10–15 min (depending on the
scanning mode), which allows the composition of images every hour for the generation of
SST L2 and L3 gridded products, with 2-km resolution at nadir and 12-km resolution at
high satellite view zenith angles (~67◦) [15].

The GHRSST Level 3C subskin SST GOES-16 ABI (GDS V2), produced by the Ocean
and Sea Ice Satellite Application Facility (OSI SAF), is an hourly average product projected
on a regular grid with a 0.05◦ resolution. The SST is determined within a complex process-
ing chain at every pixel that passes through the nowcasting (NWC) cloud mask [28], and
is identified as clear sky over the ocean. The “noncorrected” SST is then derived using a
split window nonlinear regression algorithm (NL) [7] with three spectral window channels
centered at 8.5, 10.3 and 12.3 µm [16,29,30] (Equation (1)).

SST = (a + bSθ)T8.5 + (c + dTCLI + eSθ)(T10.3 − T12.3) + gSθ + f (1)

a, b, c, d, f and g are the regression coefficients determined from BT simulations on
a radiosonde profile database [31], with the offset coefficient corrected relative to buoy
measurements. TCLI is the climatological SST value. Sθ = sec(θsat) − 1, where, θsat is the
satellite zenith angle.

The 8.5-µm channel is used in conjunction with the 10.3- and 12.3-µm channels for
the determination of both daytime and nighttime SST, as well as for improved detection of
thin cirrus clouds and correction for atmospheric humidity [15,16].

An incremental algorithm is then used to reduce regional/seasonal biases by com-
paring observed and simulated BTs (using OSTIA L4 SST, NWF profiles and radiative
transfer equations), averaged over the last 20 days to reduce the uncertainties in the
simulated BTs [30].

Finally, a quality control (QC) was created to inform the quality level of SST estimates
for each pixel, with increasing levels from 0 to 5, classified as: no data (0), invalid (1), not
used (2), good (3), very good (4) and excellent (5). This information is provided together
with the SST product for every pixel that does not contain cloud mask. Only quality levels
3 to 5 are recommended for use [16], and thus, were selected for use in this study.

2.2.2. OSTIA SST Analysis

The OSTIA L4 SST analysis was developed as a contribution by the UK Meteorological
Institute (UK-Met-Office) to the international GHRSST effort to provide global SST products
for NWF, ocean model assimilation, environmental analysis and monitoring of ocean–
atmosphere systems [32]. SST analysis is produced on an operational daily basis at the
UK-Met-Office using optimal interpolation (OI) in a global grid with 0.054◦ resolution.
The sensors used to compose the final product are the Advanced Very High Resolution
Radiometer (AVHRR/NOAA and MetOP), Spinning Enhanced Visible and Infrared Imager
(SEVIRI/MSG), Advanced Baseline Imager (GOES-16), Infrared Atmospheric Sounding
Interferometer (IASI/MetOP), a microwave imager and in situ data from ships and buoys.
The sea-ice concentration is obtained from the EUMETSAT OSI-SAF product [33].

Quality control of the OSTIA data in order to obtain a better representation of the
SST of the foundation depth (SSTfnd, ≈10 m, without influence of diurnal heating [27])
led to the rejection of some values. Observations when the sun was above the horizon
(at daytime) and wind speed less than 6 m.s−1 were rejected, to prevent the inclusion of
daytime measurements with thermal stratification between the SST depths: skin (10 µm),
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subskin (1 mm) and foundation (10 m). Satellite SST data that measures SSTskin included
in the analysis were adjusted to compensate for skin temperature bias for wind speed
above 6 m.s−1, adding 0.17 ◦C to the SST measurement [27]. The quality control also has an
algorithm that checks the background in relation to the previous analysis SST, using a priori
estimates of background errors and observation errors [32]. The optimal interpolation
method used for OSTIA is the Analysis Correction Method [34,35].

3. Methods

This work is divided into two main parts: (i) the first is the comparison of the SSTsat
(ABI-GOES-16) with the MDB (SSTdepth) obtained from moored and drifting buoys to ver-
ify the quality of the satellite product in the study region; and the second (ii) is the compar-
ison of the daily average SSTsat (ABI-GOES-16) with the global SSTfnd analysis (OSTIA).

3.1. SSTsat (ABI) vs. SSTdepth (MDB)

The SSTsat was compared to the in situ MDB obtained from the PIRATA and PNBoia
programs, within the study region (Figure 2), for the year of 2018. The comparisons
with were made using hourly averages for the PNBoia data, and daily averages for the
PIRATA data.

To identify the levels and sources of uncertainty, the MDB was divided into different
sets according to the program, type of buoy (moored or drifting) and SST depth, without
influence of diurnal heating (>6 m.s−1 of wind speed for PIRATA data, and only nighttime
SST for PNBoia data), and according to the quality level (QL) of the SSTsat product (3–5).
We also used two spatial matching strategies: one using only the centered pixel and another
within a searching window of 5 × 5 pixel. For simplicity, we only show the results of the
centered pixel MDB, since the comparisons were very similar. The main differences were
that the centered pixel had a lower number of match-ups, but generally better statistics,
especially for the sharp thermal gradient regions (BMC and STF).

Since the in situ data is also subjected to measurement uncertainties, we applied a
quality control criterion in order to identify spurious errors and remove spurious SSTs from
the analyses, using the Interquartile Range statistical method (IQR). The IQR method is an
important indicator of the variability of the data, and was used to identify outliers.

The statistics used to characterize the uncertainties of SSTsat were the root mean
squared error (RMSE) and determination coefficient (from linear regression analysis),
standard deviation (SD), absolute difference (AD) and bias (mean deviation) to ascertain
systematic and random errors.

3.2. SSTsat (ABI) vs. SSTfnd (OSTIA)

A comparison between SSTsat (ABI/GOES-16) and the analysis SSTfnd (OSTIA global
product) was made within the study region (Figure 1) for the year of 2018, using the
resampled daily average interpolated to match the same grid size (0.054◦) of both products.
The daily average SSTsat was obtained using only nighttime data and daytime with wind
speed greater than or equal to 6 m.s−1 (for all pixels with QL between 3–5) to exclude
diurnal heating influence. The wind speed was provided along with the ABI-GOES-16
product, obtained from a NWF [16]. For the spatial resampling, Bilinear Interpolation was
used with the OSTIA product as reference. The results are expressed in terms of monthly
average maps of the difference between SSTfnd (OSTIA)–SSTsat (ABI).

It is important to mention again that there are several high quality L4 SST analysis
products under the GHRSST standards. The NOAA Geo-Polar Blended SST analysis
product (Geo-Polar-Blended-OSPO-L4-GLOB-v1.0) was also tested for comparison, but
since the results were very similar to those from the OSTIA comparison, the OSTIA product
was selected to show the results for the sake of simplicity.
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4. Results
4.1. SSTsat (ABI) vs. SSTdepth (MDB)

The comparisons of SSTsat with SSTdepth had an overall good agreement for the
MDBs, with relatively low deviation (R2 between 0.82 to 0.96) and bias (<0.06 ◦C) (Figure 3).
The best performance was with the daily average SSTdepth of the PIRATA moored buoys
with lowest RMSE (<0.4 ◦C) (Figure 3C,D), and SSTdepth varying from 24–29 ◦C. The
comparison with the hourly SSTdepth of the PNBoia drifting buoys had higher RMSE
(0.59 ◦C) but also a high determination coefficient (R2, 0.96) and low bias (0.045 ◦C), and
with SSTdepth representing a higher range: 14–29 ◦C. The comparison with the hourly
SSTdepth of the PNBoia coastal moored buoys had the highest error statistics (RMSE,
0.65 ◦C), with an SSTdepth ranging from 18–30 ◦C.
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error statistics.

For the comparison of SSTsat with the PNBoia drifting buoys (SSTdepth at 0.2 m), there
was an improvement in the statistics for higher QL (Table 1), but with a significant decrease
in the number of match-ups, corroborating the recommendation to use the three best QLs
to increase the coverage of retrieved SSTsat [16,36]. The higher absolute difference (0.4 ◦C)
and RMSE (0.59 ◦C) obtained for the nighttime period could, however, also associated
be with higher uncertainties in the cloud screening algorithm due to the lack of visible
data [28,37].
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Table 1. Statistics for the difference between SSTsat and SSTdepth of the PNBoia drifting buoys,
separated by SSTsat quality level (QL) (3–5) and day and nighttime conditions, with the number of
observations (N), root-mean-square error (RMSE, ◦C), bias (◦C) and absolute difference (AD, ◦C).

Night Day

QL N RMSE Bias AD N RMSE Bias AD

5 579 0.526 −0.040 0.403 729 0.477 0.062 0.365
4 943 0.618 0.043 0.446 1160 0.561 0.073 0.420
3 806 0.602 −0.008 0.450 938 0.546 0.121 0.426

3–5 2328 0.590 0.005 0.436 2827 0.536 0.086 0.408

For the comparisons of SSTsat with the PNBoia moored buoys (SSTdepth at 1m), along
the Brazilian southeast coast, the errors and biases were relatively low for QL 5 (RMSE,
0.4 ◦C), but significantly higher for QL 3 and 4 (0.8–1 ◦C RMSE) (Table 2). A point to
consider is the much lower number of match-ups obtained for these two cases (<134),
which likely influenced the statistics. Highly dynamic coastal regions may also pose higher
challenges for such match-up exercises between satellite and in situ SST [3]. Daytime bias
was positive and nighttime negative, which was consistent with the comparisons with the
drifting buoys.

Table 2. Statistics for the difference between SSTsat and SSTdepth of the PNBoia moored buoys,
separated by SSTsat quality level (QL) (3–5), day and nighttime conditions, with the number of
observations (N), root-mean-square error (RMSE, ◦C), bias (◦C) and absolute difference (AD, ◦C).

Night Day

QL N RMSE Bias AD N RMSE Bias AD

5 259 0.408 −0.013 0.290 344 0.441 0.094 0.308
4 81 0.817 −0.102 0.577 134 0.847 0.071 0.565
3 40 1.050 −0.123 0.737 69 1.149 0.344 0.851

3–5 380 0.612 −0.044 0.398 547 0.682 0.120 0.439

For the comparison of SSTsat with the daily average SSTdepth (1 m) of the moored
buoys of the PIRATA project in the Tropical Atlantic, there was also an improvement in
the statistics as the QL increased, but the errors and biases for QLs 3 and 4 in this case
were still reasonably good (≤0.4 ◦C RMSE, <0.1 ◦C bias) (Table 3). When removing the
match-ups under conditions of wind speeds lower than 6 m.s−1, the error was slightly
lower for SSTsat, even though the number of match-ups reduced significantly (e.g., 42 to 15
for QL 5) (Table 3). This highlights the importance of removing data which may have been
significantly subjected to daytime thermal stratification when comparing SSTsat with in
situ MDBs [27].

Table 3. Statistics of the difference between SSTsat and SSTdepth of the PIRATE moored buoys,
separated by SSTsat quality level (QL) (3–5) for all conditions, and only for wind speed ≥ 6 m.s−1,
with the: number of observations (N), root-mean-square error (RMSE, ◦C), bias (◦C) and absolute
difference (AD, ◦C).

SST1m (All Conditions) SST1m (≥6 m.s−1)

QL N RMSE Bias AD N RMSE Bias AD

5 42 0.226 −0.046 0.162 15 0.116 −0.027 0.092
4 259 0.328 −0.031 0.254 84 0.288 −0.010 0.227
3 401 0.437 −0.086 0.315 124 0.452 −0.087 0.310

3–5 702 0.390 −0.063 0.284 223 0.382 −0.054 0.264

All comparisons had a normal distribution of biases, with the majority of the differ-
ences being centered around zero. The histogram of the SST differences for the PNBoia
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moored and drifting buoys were slightly skewed towards more positive biases, whereas
the differences for the PIRATA moored buoys had more negative biases (Figure 4). Positive
biases at higher latitudes (> 20◦S) were also observed by [36] which compared the same
ABI SST product (OSI SAF) to in situ MDBs across the Atlantic Ocean (for May 2018). No
plausible explanation was devised by the authors in this case. In contrast, negative biases
at the Tropical Atlantic were attributed to unmasked atmospheric aeolian dust bursts from
the Sahara Desert [36].Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 17 
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The dependency of the SST differences on the geographical location (latitude and
longitude), SST range and diurnal heating/cooling processes was analyzed in more detail
for the PNBoia drifting buoys, as this MDB had hourly data, a reasonable number of
observations (5155) and a higher range of SST values (Figures 5 and 6).

No strong dependencies were observed, but only some slight tendencies which could
reveal the influence of some interferences. The positive biases for higher latitudes (> 20◦S)
were observed only up to 35◦S. South of that the biases become negative (up to −39◦S)
(Figure 5A). This could be associated with higher effects of vapor absorption along the
slant line of sight, which increases substantially at higher satellite zenith angles [12,36,38].
The differences in respect to the longitude profile, on the other hand, did not reveal
any tendency (Figure 5B). For the SST values, there was only a slight increase in both
positive and negative biases at the extremes, associated with a decrease in the number of
observations (Figure 5C).
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For the hourly differences between SSTsat and SSTdepth the highest positive values
were obtained at the warmest daytime (11–12 h local time) with a mean difference of
0.20–0.21 ◦C, and the highest negative values at nighttime (maximum of −0.14 ◦C at 23 h)
(Figure 6). These values however also coincided with a lower number of observations
(50–140), and need to be viewed with caution. Nevertheless, one may note a higher
frequency of positive biases during daytime (6–18 h) and negative during nighttime,
revealing the higher influence of diurnal heating/cooling processes on SSTsat, as expected.
The high SD values (0.44–0.84) also suggest high local differences.

4.2. SSTsat (ABI) vs. SSTfnd (OSTIA)

Regarding comparisons of the ABI GOES-16 SSTsat with the OSTIA analysis SSTfnd,
the monthly mean differences were generally close to zero within most of the study region,
especially for the central South Atlantic (0–30◦S), with exceptions for some months and
regions (Figure 7). January had the highest mean differences (up to 2 ◦C), with cooler SSTsat
over most of the region. December showed a similar pattern but with lower differences.
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Cooler ABI SSTsat can be partly explained by higher water vapor absorption and cloud
contamination [39], which are typically higher in the South Atlantic during the austral
summer months (December–February), especially within the ITZC and SACZ (Figure 1).
For the other months, cooler ABI SSTsat values were more constrained in the Tropical
Atlantic (10◦N to 10◦S) and/or the southernmost sector of the study region (south of 30◦S).
The Tropical Atlantic showed higher biases (1–2 ◦C), especially during the ITCZ southward
displacement in the austral summer, and at the northernmost eastern sector, which is
known to be influenced by aeolian dusts blown from the Sahara Desert, and transported
by trade winds across the Atlantic [13].Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 17 
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The Southern Atlantic (>30◦S) showed a seasonal pattern of cooler ABI SST from
May to October, and warmer ABI SST, especially from February to April. The highest
differences (up to 2 ◦C) were observed at the BMC and STF (30–45◦S), especially from
May to November, when there is a northward displacement of these frontal zones (see
Figure 1 for reference of their locations). Similar patterns of higher biases at the Tropical
and Southern Atlantic have also been reported in other works analyzing the same ABI
product [36] and other SST products as well [40].

5. Discussion

The comparisons of SSTsat with the in situ MDBs showed an overall good agreement,
with a mean bias (<0.1 ◦C) and RMSE (~0.5 ◦C) within the GHRSST recommendations. The
exception was only for the coastal moored buoys of the PNBoia program, for which SSTsat
presented higher RMSE (0.65 ◦C).

The higher errors obtained for the moored coastal buoys may also reflect the increased
difficulty of obtaining good match-ups at the coastal zone which, in this case, is subjected to
sharp thermal fronts, such as at the Cape Frio upwelling cell off Rio de Janeiro (~23◦ S) [18].
Two of the four buoys analyzed were located within this cell. The other two buoys were
near the shelf break and were also likely subjected to sharp thermal gradients, especially
during the austral winter, when a northward coastal current transporting a mixture of
Subantarctic waters and the La Plata river plume formed a coastal front with the warm
tropical waters transported by the Brazilian Current [41]. The SSTdepth comprised a
relatively high range of values (18–30 ◦C), indicating the presence of these coastal fronts.
Deviations caused by subgrid scale (<0.05◦) SST variability may be allowed. This, however,
does not explain all the errors. Upwelling radiation from the adjacent continent is another
source that may affect the SST satellite signal from coastal waters and increase match-up
differences [42]. Regular maintenance and calibration of the sensors of the PNBoia moored
buoys has also been reported to be challenging, posing higher uncertainties for in situ
MDB [20].

The errors statistics for the Southern Atlantic (PNBoia drifting buoys) were also
somewhat higher than for the Tropical Atlantic (PIRATA), likely due to the more challenging
conditions for the SSTsat geostationary retrievals in the region, including higher satellite
zenith angle, with higher atmospheric attenuation and lower spatial resolution [12], sharp
thermal fronts (at the BMC and STF) and persistent cloud coverage, especially during the
austral winter (with frequent passage of cold fronts). The hourly averaged SST values of
both SSTsat and SSTdepth are also likely to have higher levels of uncertainty than daily
averaged values, which were used for the PIRATA comparison.

Regarding the QLs of SSTsat, the results reinforce the recommendations of the OSI
SAF validation report [36], i.e., to use QLs 3–5 to increase the number of observations
without compromising significantly the quality of the retrieved SSTsat. An exception was
the PNBoia coastal moored buoys, but the low number of observations may also have
compromised the analysis.

The positive bias obtained for daytime and negative bias for nighttime match-ups
denotes the higher influence of solar radiation heating during the daytime, and heat loss
at night, on SSTsat compared to SSTdepth. Similar behavior was also observed by Picart
and Marsouin (2018) for the same ABI SST product, as well as for other SST geostationary
products in other works [12,43]. The differences between the temperature measured by
thermal infrared radiometers, which correspond to the most superficial layer of skin
(10 µm), and the temperature measured by in situ sensors from moored and drifting buoys
(0.2−1 m), can reach up to 2 ◦C, depending on the thermal stratification [27]. The regression
SST algorithm is adjusted to in situ SSTdepth with an offset correction [29,30], and the
retrieved satellite SST is representative of SSTdepth, but is still sensitive to changes in the
skin layer [12]. While this poses a challenge for satellite and in situ SST match-ups, it is
a key advantage of geostationary SST observations, as the sensitivity of SSTsat to skin
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and subskin SST variations provides information regarding the diurnal heating/cooling
processes in a layer which is important for air–sea interactions [12,43].

With respect to the regional biases, the more negative biases in SSTsat observed for
the Tropical Atlantic, both for the MDB comparison and the SSTfnd product, were likely
related to the higher influence of water vapor absorption and subpixel cloud contamination
at the ITCZ [39]. Influence of atmospheric aeolian dust from the Sahara Desert is also a
major source of uncertainty in the northeastern Tropical Atlantic [13]. Dust absorbs the
upwelling radiation and reemits at higher levels, thereby decreasing the radiance (and BT)
measured at top of the atmosphere, leading to underestimations of the retrieved SSTsat.
The OSI SAF ABI SST product has a correction term for Sahara dust, but it seems to be
insufficient, as also observed in other works [36].

The positive biases at higher latitudes seemed to be either localized (20–35◦S) or
seasonal, as also shown with the SSTfnd comparison. Higher ABI SST errors in the
region for were also observed in other works [12,36]. The Southern Atlantic (>20◦S) is
characterized by the presence of highly dynamic sharp thermal fronts, especially within
the BMC and STF (30–45◦S). The spatial pattern of the biases revealed by the SSTfnd
comparison suggest that these frontal systems are a major source of uncertainty in the
region. Cooler ABI SST values were especially observed during the winter months, when
the oceanic frontal systems have an equatorward shift (see Figure 1). Besides the challenges
of matching SST measurements and products obtained at different spatial resolutions in
these oceanic frontal zones, another important source of uncertainty in the region during
the winter months is the frequent passage of cold atmospheric fronts, which may also lead
to subpixel cloud contamination and cooler ABI SST retrievals. Positive ABI SST biases at
the higher latitudes, however, remain to be further investigated.

6. Conclusions and Remarks

The present work analyzed the uncertainties of the OSI SAF SST product of the ABI
sensor on board the NOAA’s next generation geostationary satellite GOES-16, over the
Tropical and Southwestern Atlantic Ocean. Comparisons with in situ MDBs revealed
a mean bias (<0.1 ◦C) and error (RMSE, ~0.5 ◦C) within the GHRSST standards. Some
uncertainties were attributed to thermal stratification, when all daytime conditions were
used, and to regional/seasonal challenging conditions specific to each MDB. Some differ-
ences were also partly attributed to the uncertainties of the in situ MDBs, especially for
the PNBoia moored buoys near the Brazilian coast, which are known to face challenges
regarding the maintenance and calibrations of the sensors. Coastal in situ SST data are also
more affected by thermal fronts (e.g., at upwelling cells) and land adjacency effects, posing
significant challenges for these comparisons, which showed the highest differences. The
comparisons for the drifting buoys of the PNBoia program in the Southwestern Atlantic
showed low-moderate error statistics, and the uncertainties were likely associated with
high SST gradients at the oceanic frontal zones and cloud contamination effects. Compar-
isons of the ABI SSTsat with the PIRATA moored buoys at the Tropical Atlantic showed
the best results, consistent with this high quality, long-term program. Higher biases were
related to cloud contamination effects and water vapor absorption, especially during the
cloudiest season, with the ITCZ southward displacement.

The regional and seasonal biases of the ABI SSTsat were also indicated by a comparison
with the L4 SST analysis product, reinforcing the previous analysis and highlighting some
other sources of uncertainty. In the Tropical Atlantic, the highest biases were obtained at
the northernmost eastern sector, and were attributed to unmasked aeolian dusts from the
Sahara Desert. The second region with highest biases (up to 2 ◦C) were observed in the
Southwestern Atlantic at the oceanic frontal zones of the BMC and STF. The middle portion
of the South Atlantic basin had generally low biases (<0.1 ◦C) throughout most seasons,
and seemed to have some higher uncertainties associated with the SACZ, likely due to
cloud contamination effects.
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The South Atlantic is known to be an unsampled region, with a few exceptions in
the Tropical zone. The present work revealed how the “new” ABI GOES-16 SST product
performs reasonably well in the study region, being suitable for operational use. Sea-
sonal/regional biases that were pointed out are consistent with other works and highlight
the need for further improvements in SST satellite retrievals, especially for the monitoring
and analysis of mesoscale processes in highly dynamic frontal zones. The ABI SST product
can provide high spatial-temporal information which can be broadly applied. The diurnal
cycle is, for instance, a unique process measured by this product and may contribute to
our understanding of the heat flux in the boundary layer, among other applications. The
ABI sensor has also high spectral information collected on 16 channels, which should be
further explored to improve cloud masking algorithms, processing chains, and the SST
retrieval algorithm. These are some recommendations for future studies exploring the new
capabilities of the ABI GOES-16 for SST satellite retrievals.
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