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Abstract: The Colombian Biogeographic Choco (CBC) and the La Plata Basin (LPB) 
are regions with high biodiversity. However, these areas are characterized by scarce 
climatological information, complex orography, and rain-gauge network unevenly 
distributed. Interpolated data from the ground station might overcome these aspects. 
For this reason, is necessary to identify the best technique for the spatial interpolation 
of rainfall. Hence, the spatial interpolation techniques were applied to annual and 
seasonal rainfall in the CBC and LPB. Geostatistical results and deterministic approaches 
were compared by cross-validation. Cokriging with spherical (gaussian) model is the best 
interpolator in the CBC (LPB), as indicated by the lowest root mean square error (RMSE) 
and a standardized RMSE close to one. The CBC shows three rainfall cores: the northern, 
9,000 mm/year; the central-southern, 10,000 mm/year; and the southern, 7,000 mm/
year. The LPB shows a west-east rainfall gradient, with a minimum to the west (450 mm/
year) and a maximum in the mid-west (2,000 mm/year). To the north of the LPB, rainfall 
reaches 1,500 mm/year, while in the south it reaches only 900 mm/year. The results in 
our study may be useful for scientists and decision-makers for use in environmental 
and hydrological models for the CBC and the LPB.
Key words: Biogeographic Choco, hotspots, La Plata Basin, rainfall, South America and 
spatial interpolation.

INTRODUCTION

Climate is one of the most important 
environmental factors in terrestrial ecosystems 
(Tuhkanen 1980, Chiu et al. 2009). Rainfall plays a 
key role in the hydrological cycle, a determinant 
of the global climate system and participates 
in the dynamics and atmospheric composition 
(Sánchez & Vélez 2015). The high complexity 
of the spatial and temporal structure of this 
climatic element hinders the generalization of 
typical behaviors, even in small regions. However, 
climate information is generally recorded as 
timely data through the weather stations at 
each location, and many environmental and 

hydrological models require input information 
at unobserved locations, requiring spatially 
continuous climatic data, usually in the form 
of interpolated grids; furthermore, a common 
difficulty in the study of events associated 
with rainfall is the lack of timely and reliable 
information (Guisan & Zimmermann 2000, 
Anderson & Martínez-Mayer 2004, Silva 2009). 
In this respect, spatial interpolation techniques 
are a trustworthy approach to estimating 
climatic information from close measurements 
for locations without observations (Berndt & 
Haberlandt 2018).

 To overcome the low-density network 
constraint and sparse distribution of the 



WILMAR L. CERÓN et al.	  SPATIAL INTERPOLATION RAINFALL IN SOUTH AMERICA

An Acad Bras Cienc (2021) 93(1)  e20190674  2 | 22 

meteorological stations, the spatial interpolation 
becomes an important tool to estimate 
climatological variables not geographically 
covered by the existing observation network 
(Andrade & Moreano 2013, Basconcillo et al. 
2017, Berndt & Haberlandt 2018). However, there 
is little evidence that a single interpolation 
method is ideal for several conditions. Thus, it 
is important to determine the best method for 
each situation (Atorre et al. 2007). Essentially, 
this happens because each technique depends 
on the dataset characteristics. So, a technique 
may be suitable for some variables or regions 
but may not work for others (Basconcillo et al. 
2017). The generation of continuous surfaces 
can be performed by a variety of methods, but 
the difficulty is to choose the one that best 
reproduces the real surface (Caruso & Quarta 
1998, Ly et al. 2011). Concerning the rainfall, it 
may be influenced by small-scale processes 
and by orography. Given the orographic diversity 
and the influence of many atmospheric factors 
in South America (SA), the local and regional 
climates show high complexity (Poveda 2004) 
with diverse climatic dynamics such as the 
Colombian Biogeographic Choco (CBC) and the La 
Plata Basin (LPB), regions renowned worldwide 
as biodiversity hotspots for conservation 
prioritization (Myers et al. 2000, Mittermeier et 
al. 2004, 2011). 

Most biodiversity hotspots are in tropical 
developing countries that face great challenges, 
such as high demographic pressure, food 
shortage, poverty, and corruption (Veech 
2003, Williams 2011). The CBC and LPB are in 
extreme northwestern and southeastern SA, 
respectively. They are regions with climate 
and biodiversity influenced by the moisture 
recycling, in particular, evapotranspiration in 
forests of the Brazilian Amazon the continent’s 
biggest rainmaker which often takes water long 
distances that contributes substantially to 

rainfall regionally as well as over other remote 
regions such as the CBC and LPB (Zemp et al. 
2014). 

In the CBC and LPB, the spatial distribution 
of rainfall is an aspect important that requires 
detailed scientific research since are regions 
with rainfall measurements scarce and with rain-
gauge network sparse and irregular. Hence, it is 
necessary the spatial interpolation process where 
points with known values ​​are used to estimate 
unknown values ​​at other points. This type of 
interpolated surface is often called a statistical 
surface, that describes and explains the spatial 
trend of the variables (Mitas & Mitasova 2005). 
There is a wide range of rainfall interpolation 
methods proposed in the literature, divided into 
three main categories: deterministic (geometric), 
statistical and geostatistical. Deterministic 
interpolation methods create surfaces from the 
measured points, based on similarity, such as 
polygons of Thiessen, also known as nearest 
neighbor or Voronoi diagrams (Thiessen 1911) 
and Inverse Distance Weighting (IDW) (Shepard 
1968) or degree of smoothing, such as Radial 
Basis Functions (RBF), a generalized version of 
the multi-quadratic method (MQ) developed 
by Hardy (1971); besides the irregular triangular 
network (TIN) or linear regression and neural 
networks (Sluiter 2008). Statistical methods 
use linear or multiple regressions to correlate 
rainfall with predictive variables, such as 
elevation, longitude, distance to the sea, 
among others (Castro et al. 2014). However, the 
greater the number of predictors considered 
in the regression, the greater the number of 
stations required in the estimation (Chen & 
Liu 2012). The kriging method (Matheron 1971), 
creates surfaces that incorporate the statistical 
properties of the measured data, considering 
spatial autocorrelation between known points 
(Firdaus & Talib 2016, Angulo et al. 2009, Hao & 
Chang 2013). These techniques produce not only 
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predictive surfaces, but also surfaces of error or 
uncertainty, thus give an indication of how good 
the predictions are (Firdaus & Talib 2016).

Univariate geostatistical methods (simple 
kriging) generally smooth the interpolated 
variable, and therefore have difficulty in 
reproducing the spatial variability accurately. 
To improve the interpolation performance 
(Wagner et al. 2012), multivariate methods 
use complementary spatial information from 
covariates such as elevation or dynamic radar 
data (Foehn et al. 2018), since the inclusion 
of geographic and topographical information 
increases the estimation capacity of the 
interpolation schemes (Portalés et al. 2010, 
Borges et al. 2016). Studies have incorporated 
radar information into interpolation methods 
(Schiemann et al. 2011, Verworn & Haberlandt 
2011, Wagner et al. 2012). However, these methods 
require a large amount of data that is often not 
available to users (Borges et al. 2016). 

Goovaerts (2000) using the elevation 
as secondary data incorporated into the 
multivariate geostatistics for monthly and 
annual rainfall, compared these results with 
the deterministic methods, and found that the 
IDW and the Thiessen Polygon provide greater 
prediction errors. More recently, Pellicone et al. 
(2018) compared different rainfall interpolation 
algorithms in southern Italy to identify the 
method that best reproduces the surface of the 
rainfall field; the results clearly indicate that 
geostatistical methods outweigh the IDW, and 
that kriging with external drift (KED) shows the 
smallest prediction error.

In the case of Colombia, Álzate et al. 
(2018) used the regionalized rainfall model 
Regionalisierte Niederschlage (Regnie) to 
interpolate rainfall in the Andean, Caribbean 
and Pacific regions, integrating slope and 
elevation as secondary variables. Multiple linear 
regression models and geoprocessing tools were 

used to generate the interpolated surfaces. The 
Regnie surface tests were like those obtained 
with Spline and IDW interpolations for rainfall. 
The Institute of Hydrology, Meteorology and 
Environmental Studies (IDEAM 2005) has 
applied the IDW method to represent the main 
climatic variables for the Colombian territory. 
On the other hand, Correa et al. (2014) found 
that circular, spherical and gaussian models 
with the ordinary kriging interpolation method 
can be used with satisfactory performance in 
interpolating the annual rainfall data in the 
state of Mato Grosso in southern Brazil (high 
basin of LPB).

In this context, the present study compares 
different spatial interpolation techniques 
commonly used, aiming to identify the 
technique with the best rainfall estimation in 
the CBC and LPB. Furthermore, the performance 
of the spatial interpolation techniques is 
explored through its capability to represent the 
annual and seasonal rainfall. The techniques 
evaluated here include non-geostatistical 
(IDW) and geostatistical approaches (Ordinary 
Kriging and Ordinary Cokriging with altitude as 
a secondary variable) with different theoretical 
models (exponential, spherical, and gaussian). 
The segment below presents the study domain 
and data, followed by the description of the 
methods used. The results and discussions are 
presented in Colombian biogeographic Choco 
and in La Plata Basin.

Study domain and data  
Analyses are carried out in two regions in SA: the 
Colombian Biogeographic Choco (CBC) and the 
La Plata Basin (LPB). The Colombian Pacific basin 
located in extreme northwestern SA is composed 
of a coastal tropical forest and a variety of 
ecosystems proper among mangroves, marshes, 
flood forests and moorland that structures 
an enclave of the specific diversity known as 
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the CBC (Figure 1) (Myers 1988, 1990, Myers et 
al. 2000, Mittermeier et al. 2004, Marchese 
2015). This region hosts approximately 3% of 
the global plant species, and is characterized 
by high rainfall, up to 8,000 mm/year (Poveda 
& Mesa 2000). Despite being a region of great 
importance for Colombia, it is an area with 
scarce climatological information due to the 
orographic complexity, the difficult access and 
the little instrumentation and investment of the 
Colombian state in the region. On the other hand, 
LPB in southeastern SA is the fifth largest basin 
in the world and the second most extensive in 
SA after the Amazon (Figure 1) (García & Vargas 
1998, Mechoso et al. 2001). It covers ecosystems 

of special interest such as the Cerrado and the 
Atlantic Forest; however, does not realize its full 
potential due to the lack of coordinated efforts 
of the five countries sharing the basin (Saurral & 
Barros 2009). These two regions are part of the 
biodiversity hotspots, which cover only 17.3% 
of the terrestrial surface but retain 77% of all 
endemic plant species, 43% of vertebrates and 
80% of all endangered amphibians (Mittermeier 
et al. 2011). 

Data used in the study include monthly 
rainfall averages of 193 meteorological stations 
provided by the meteorological and hydrology 
institutes of LPB countries and 166 for the CBC 
(Table I). The stations were selected according to 

Figure 1. Raingauge stations for: a) Colombian Biogeographic Choco (CBC), and b) La Plata Basin.
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criteria such as: extent of the historical records 
reported by each institute, location of stations 
within the basin and in the nearby basins, and 
those with less than 10% of missing data. Based 
on these criteria, of the 193 LPB stations, 170 
were selected with historical series of rainfall 
spanning over 31 years with a common period 
between 1987-2017. The stations in the LPB 
exhibit an irregular spatial distribution, with 
some information deficits in the north, mainly 
in the State of Mato Grosso (Brazil), and in the 
southeast of the basin (Figure 1). On the other 
hand, the 156 stations in the CBC present data 
during a common period from 1983 to 2016 
and show a more homogeneous distribution; 
however, the northern coast offers a lower 
density of information (Figure 1).

To obtain coherent historical series, the 
data were evaluated for absence of errors, 

completeness and consistency. The data 
consistency was tested with missing data 
analysis (MDA) by applying the linear regression 
with data from the nearest stations. MDA, also 
called data imputation, is a procedure that 
uses the information contained in the sample 
to assign a value to those variables that have 
records with missing values, either because there 
is no information or because it is detected some 
unexpected behavior. Then, the exploratory 
analysis was performed, and the frequency 
charts, multiannual average monthly rainfall 
and quantil-quantil graphs were obtained.

Elevation data were obtained from the 
Shuttle Radar Topography Mission (SRTM; 
National Aeronautics & Space Administration-
NASA 2017). Data was extracted for each station.

Table I. Information provided by the Meteorological Institutes in the study regions.

Region Country Institute Web page No. 
Stations

Stations 
selected

LPB

Argentina
National hydrological network-

Republic of Argentina, 
Subsecretariat of Water 

Resources

http://bdhi. 
hidricosargentina.gob.ar/ 111 92

Bolivia National Service of Meteorology 
and Hydrology of Bolivia

http://www.senamhi.gob. 
bo/web/public/sismet 30 29

Brazil National Institute of Meteorology 
of Brazil

http://www.inmet. 
gov.br/portal/index. 

php?r=bdmep/bdmep
41 38

Paraguay
Directorate of Meteorology and 
Hydrology of the Government of 

Paraguay
https://www.meteorologia. 
gov.py/serviciopublico.php 11 11

CBC Colombia
Institute of Hydrology, 

Meteorology and Environmental 
Studies (IDEAM)

http://www.ideam.gov.co/ 166 156
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Interpolation methods
To find the best interpolation technique for each 
region and differences in seasonal performance, 
we compared the IDW, Kriging and Cokriging 
techniques with different semivariogram 
models (exponential, spherical and gaussian), 
and altitude as a secondary variable, for a total 
of seven interpolation tests.

Inverse distance weighting (IDW)
The IDW, the method most widely used by GIS 
analysts (Firdaus & Talib 2016), employs the first 
Law of Geography (Tobler 1970), and estimates 
unknown measures as weighted averages of 
measures known in the near points, which has 
the greatest weight in the procedure (Longley et 
al. 2011). That is, each climatic value at a non-
sampled point z(x) is a scoring average of the 
distance from the values at the sampling points 
in the neighborhood z(x1), z(x2), ..., z(xn). Climatic 
values are more like nearest distances, so the 
inverse distance (1/di) between z(xi) and z(x) is 
used as a weighting factor (Eq. 1).

( )
( )n r

i iji 1
n r

iji 1

z x d
z x

d

−
=

−
=

= ∑
∑

Eq.1

where z(x) is the predicted value, z(xi) is the 
climatic value at a neighboring meteorological 
station, dij is the distance between z(x) and 
z(xi) and r is an empirical parameter. The ideal 
weighting value can be obtained by minimizing 
the root mean square error, which is a statistic 
calculated during cross-validation (Hao & Chang 
2013).

Kriging and cokriging
The Kriging method considers both the degree 
and distance of variation between observed 
points. If the spatial variation of an attribute is 
not totally random (stochastic) or deterministic 
(Ly et al. 2011), and the spatial variation of 
a continuous climate variable is irregular to 

be modeled by a continuous mathematical 
function, the spatial variation can best be 
predicted by a probabilistic surface (Angulo 
et al. 2009). This continuous variable is called 
a regionalized variable, which consists of a 
derivation component and a spatially correlated 
random component (Burrough et al. 2015). Thus, 
the spatially localized climatic variable z(x) is 
expressed by Eq. 2.

( ) ( ) ( )z x m x xε ε′+ + ′′= Eq.2

where m(x) is the derivation component, i.e. 
the structural variation of the climatic variable, 
ɛ’(x) are the spatially correlated residuals, or the 
difference between the derivation component 
and the sampling data values, and ɛ’’ is the 
spatially independent residue.

A function that relates the spatial 
variance of the variable is determined using 
the semivariogram that indicates the semi 
variance ( γ ) that describes how similar the 
observed values are grouped in space (Tobler 
1970). The calculated variance is a measure that 
determines the similarity between observations, 
where the highest similarity, the lower semi-
variance (Lozano et al. 2004). Kriging focuses on 
the correlated spatial component and uses the 
adjusted semivariogram (Atorre et al. 2007). On 
the other hand, the Cokriging allows to consider 
the influence of external variables (co-varied, 
in this case height) when analyzing the cross-
correlation between the errors of the different 
variables ɛ’1(x), ɛ’2(x), etc. (Angulo et al. 2009).

Since the geostatistical estimates are 
based on the spatial structure and the spatial 
variability of the data, the semivariogram is 
the most appropriate means to represent 
the spatial dependence of the data (Aziz et 
al. 2019). This spatial statistic tool allows to 
express the dissimilarity as a function of 
distance (Sabzipour et al. 2019). Essentially, 
a semivariogram is a description of the 
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spatial data continuity (Pellicone 2018). The 
experimental semivariogram  is computed as 
half the average squared difference between the 
components of data pairs (Eq. 3) to quantify the 
spatial dependence on the data.

( ) ( )
( )

( ) ( ) 2

1

1  
2

N h

i i
i

h Z x Z x h
N h

γ
=

 = − + ∑ 	 Eq.3

where h is the distance, N(h) number of sample 
pairs within the distance h, xi and xi + h sampling 
locations separated by a distance h and, Z(xi)and 
Z (xi + h) measured values of the variables in the 
corresponding locations. By changing h, both in 
distance and direction, a set of the experimental 
semivariograms for the data is obtained (Aziz et 
al. 2019).

For cokriging, Goovaerts (2000) observed 
that the use of multiple secondary variables 
could lead to unstable cokriging systems. 
Therefore, only the elevation in this study was 
considered to improve the spatial interpolation. 
Thus, cokriging requires the semivariogram 
models of each variable γ (Zi, Zj) and γ (Yi, Yj), 
equal to precipitation and elevation, and cross 
semi-variograms of primary and secondary 
variables respectively for spaced distances γ (Zi, 
Yi). The cross semivariogram was computed as 
Eq. 4.

( ) ( )
( )

( ) ( )
1

1   ˆ
2

N h
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i

ZY h Zx Z x h Yx Y x h
N h

γ
=

   = − + − +   ∑ 	 Eq.4

However, the difficulty lies in the fact 
that the three models cannot be constructed 
independently from one another. Thus, the 
easiest approach to estimating rainfall consists 
of modeling the three semi-variograms as 
linear combinations of the same set of basic 
semivariogram models (Ly et al. 2011, Goovaerts 
1997). The coefficients of the adjusted models 
are used to determine the weight of the stations 
in the interpolation.

Besides, the estimated variance depends 
on the semivariogram model, the number N of 

rain gauges, and its spatial location. In this way, 
an optimal choice of the semivariogram model 
is crucial for the evaluation of the data (Bohling 
2007). Nevertheless, there are several different 
semivariogram models, and it is a difficult task 
to determine among the models which one 
produces the closest results to the observed 
conditions (Mazzella & Mazzella 2013, Nadiah et 
al. 2016, Aziz et al. 2019). The method’s advantages 
and its disadvantages hence depend strongly on 
the characteristics of the dataset used to define 
their suitability. Also, Castro et al. (2010) point out 
that many studies do not define the theoretical 
model that best fits the data studied. Based on 
the above, the study aimed to compare different 
semivariogram models to select the one that 
best suits to obtain the spatial distribution 
of annual and seasonal rainfall in the regions 
under study. Here, the three more used models 
for fitting semivariogram, the spherical, 
gaussian and exponential models (Mcbratney & 
Webster 1986, Goovaters 1997, 2000, Deutsch & 
Journel 1998, Ly et al. 2011, Mazzella & Mazzella 
2013, Aziz et al. 2019), were used. Therefore, 
the performances of the spherical, gaussian, 
and exponential semivariogram models were 
evaluated in this study. The equations of the 
semivariogram models can be seen in Ly et al. 
(2011). Then, the best semivariogram model was 
selected based on cross-validation statistics, 
which are described in the next section. 

Evaluation of error assessment
The IDW, ordinary Kriging and Cokriging 
interpolation methods were explored and 
compared. The performance of each method 
was evaluated through cross-validation. This 
procedure compares interpolation methods 
by repeating the following procedure for each 
interpolation (Chang 2006): (1) eliminates a 
known point from the dataset, (2) the remaining 
points are used to estimate the value at the 
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previously removed point and 3) the error of 
the estimate is calculated by comparing the 
estimated value with the known one. After 
completing the procedure for each known point, 
two common diagnostic statistics, the Root Mean 
Square Error (RMSE, Eq. 5) and the standardized 
RMSE (RMSSE, Eq. 6), are obtained to evaluate 
the accuracy of the interpolation method as is 
shown in the following equations:

( )
n

2

i 1

1RMSE Zi Z
n =

= −∑ 	 Eq.5

RMSERMSSE 
S

=
	 Eq.6

where Zi and Z are the values measured and 
estimated at the sampling point i (i=1, 2, ... n); n 
is the number of values used for the estimate; 
and S is the standard error.

The RMSE statistic is available for all exact 
local methods, but RMSSE is only available for 
the Kriging and Cokriging because variance 
is required for the computation. The best 
interpolation method should produce a smaller 
RMSE and a RMSSE closer to 1 (Chang 2006). 
Additionally, the Average Standard Error (ASE, 
Eq. 7) was calculated to assess the variability of 
predictions:

( )2

1

1 
N

i
i

ASE x
N

σ
=

= ∑ 	 Eq.7

where N is the number of values in the dataset 
and 2σ  is the interpolation variance for the 
location xi (Robinson & Metternicht 2006).

If the ASE is close to the RMSE, the variability 
in the prediction is evaluated correctly. In 
addition, if the ASE is greater (less) than the 

Table II. Cross-validation comparison for the CBC interpolation models.

Period Statistical 
criteria 

Model

Cokriging Kriging
IDW

Sph. Exp. Gau. Sph. Exp. Gau.

DJF

RMSE 97.6 93.9 187.8 85.1 152.2 84.2 86.6

RMSSE 1.2 0.9 68.8 0.6 281.5 0.8  

ASE 82.7 106.6 32.7 120.4 31.4 97.4  

MAM

RMSE 89.5 94.2 115.7 85.8 145.0 83.5 102.3

RMSSE 0.9 0.8 67.0 0.6 220.0 0.7  

ASE 99.1 105.3 33.0 129.3 32.0 100.9  

JJA

RMSE 95.0 104.2 127.2 87.0 152.0 85.9 96.6

RMSSE 0.8 0.9 31.8 0.5 107.9 0.7  

ASE 111.0 107.4 31.9 146.3 33.5 114.1  

SON

RMSE 96.0 106.3 130.5 87.2 143.3 86.5 99.1

RMSSE 0.8 0.9 51.0 0.5 161.6 0.7  

ASE 115.2 113.5 34.8 149.6 35.4 117.7  

ANNUAL

RMSE 1177.9 1153.4 1843.8 1005.4 1162.1 1009.3 1448.6

RMSSE 1.0 0.7 6.9 0.6 5.0 0.7  

ASE 1176.7 1558.2 390.3 1578.4 448.2 1259.6  
RMSE: Root-Mean-Square. RMSSE: Root-Mean-Square Standardized. ASE: Average Standard Error. Sph. is spherical, Exp. is 
exponential and Gau. is Gaussian.
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RMSE, the variability of the predictions is 
overestimating (underestimating) (Kalivas et al. 
2013).

RESULTS AND DISCUSSIONS
Colombian Biogeographic Choco
Table II shows the RMSE, RMSSE and ASE values ​​
for the seven interpolation surfaces tested. In 
the case of the Cokriging model, the elevation 
was used as a second variable because of its 
influence on rainfall. Although the IDW shows 

lower values ​​of RMSE during December-January-
February (DJF), in space considerable failures 
were observed in the interpolated surface, 
which leads to discarding this method. Based on 
Table II, for exponential and spherical cokriging 
models, RMSSE values are closer to 1, while 
kriging results show lower RMSSE for spherical 
and gaussian models, and gaussian cokriging 
and exponential kriging models show values 
well above 1, which means that the exponential 
and spherical cokriging models have a better 
ability to represent the variability of the dataset. 
In addition, since ASE values must be around 

Figure 2. Normal 
Quantil-Quantil graphs 
for the annual rainfall 
interpolations in the 
CBC. Ck: Cokriging with 
height. Kr: Kriging.
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to the RMSE value, exponential and spherical 
cokriging show the best prediction values of the 
variability in the seasonal scale. However at the 
annual scale, only the spherical model has good 
predictive capability. This shows that spherical 
semivariogram for cokriging is the best fitted 
experimental semivariogram for the study of 
annual and seasonal CBC rainfall.

Besides, since the ASE is greater (less) 
than the RMSE, the cokriging variance is larger 

(smaller) than the true variance and indicates 
that the variogram model overestimates 
(underestimates) the prediction variability 
mainly in March-May (MAM), July-August (JJA) 
and September-November (SON) (DJF and 
Annual), specifically for Cokriging spherical. 
These results are confirmed in the Quantil-
Quantil graphs (Figure 2), which indicate that 
the values ​​predicted by the spherical cokriging 
represent with more precision the distribution 

Figure 3. Annual and seasonal means rainfall in the Colombian Biogeographic Choco (CBC) for the 1983-2016 
period. 
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of the observed data. This occurs because the 
CBC rainfall is strongly associated with the 
topography of the Western Cordillera region, 
the Atrato and San Juan valleys, the Baudó 
Mountain Range and the coastal plain (Guarín 
& Poveda 2013). The surface winds of the Pacific 
Ocean interact with the eastern trade winds on 
the western cordillera, which combined with the 
surface warming effect and the orographic rise 
favor the deep convection, elevation of moist air, 
high amounts of condensation, and therefore, 
high rainfall (Poveda & Mesa 1999, Trenberth 
1999). Thus, the prediction could be improved 
considering elevation as a correlated secondary 
variable.

Figure 3 presents the results of the 
interpolation performed with cokriging for the 
spherical model. Also, the interpolation results 
show three main cores of strong rainfall, which 
occur on the western flank of the western ridge, 
over the middle part of the region in the west-
east direction. The first one is located in the 
central-north of the CBC, in the sub-region of 
the Northern Pacific, where the smallest rainfall 
occur in the first semester of the year and the 
largest between July and November (variation 
between 700 mm and 800 mm). The second core 
located in the Patía Basin shows the highest 
amounts of rainfall in the region, with seasonal 
values over 800-900 mm during MAM and SON. 
The last nucleus of higher rainfall is in the South 
Pacific, where there is greater rainfall during 
the first semester of the year (600 to 700 mm 
seasonal), and the lowest in the JJA, with rainfall 
between 400 and 500 mm.

On the other hand, the eastern flank of the 
western mountain range exhibits the lowest 
values ​​of precipitation, mainly in the southern 
and northern extremes in the Pastos Knot and 
the Middle Cauca River sub-regions respectively, 
however, in different seasons of the year. During 
the boreal summer-JJA (winter-DJF), the smallest 

rainfall occur in the southern (northern and 
central) part of the region, when the Intertropical 
Convergence Zone (ITCZ) ​​is in its northern 
(southern) position (Figure 3). The analysis of 
the directional trends of annual precipitations 
indicates a marked difference between the 
western flank (CBC) and east (geographical valley 
of the Cauca river) of the western mountain 
range. On the western flank, the highest rainfall 
is concentrated at the mountain slopes and 
fell to the northern and southern, with lower 
values ​​in the northern and higher parts of the 
mountains. In the case of the eastern flank, the 
rainfall increases from west to east and from 
south to north (Figure 3). 

The results presented here suggest that the 
CBC rains are unevenly distributed, with three 
intense precipitation cores throughout the 
region, reaching average values between 3,000 
and 11,000 mm annually (Figure 3). The lower 
intensity occurs in the subregion of Urabá (less 
than 3,000 mm/year) and in the South Pacific 
subregion (precipitation from 3,000 to 7,000 
mm/year). High annual rainfall occurs in the 
subregion of the Northern Pacific, with mean 
values between 8,000 and 10,000 mm/year, 
and in the Patía Basin, between the states of 
Valle del Cauca and Cauca with annual totals 
between 7,000 and 10,000 mm. This rainfall 
distribution agrees with previous findings for 
the Colombian Pacific (Eslava 1994, Poveda 2004, 
Guzmán et al. 2014). These results contrast with 
the rainfall regime on the eastern side of the 
western cordillera, where rainfall in the High 
Cauca River and Pastos Knot reaches mean 
values between 1,000 and 2,000 mm/year. These 
results are consistent with Poveda et al. (2004), 
who established ecogeographic subregions for 
the CBC with three major climatic belts: the 
South Pacific subregion, the Northern Pacific 
subregion (mainly in the upper parts of the 
Baudo and El Carmen de Atrato basins), and the 
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Patía Basin. The first subregion, in the southern 
part, presents low humidity characteristics and 
annual rainfall between 730 and 3,318 mm/
year, the second in the central northern part, 
wetter conditions and rainfall between 8,494 
and 13,670 mm/year, and the last subregion in 
the southern-central part, rainfall between 5,909 
and 8,494 mm. On the other hand, in the sub-
regional scale Hurtado (2009) identified a strong 
variability of the precipitation in small distances, 
which is determined by gradients induced by 
the topography, mainly in the Pacific plain and 
the mountain slopes, results that correspond to 
those found in this study.

Figure 4 shows the relationship between 
annual rainfall and altitude, indicating a large 
difference between the stations of the western 
margin (Pacific slope) and those of the eastern 
(Andean slope). In general, the western slope 
stations have an average altitude of 250 m.a.s.l., 
and average annual rainfall higher than 5,000 
mm (e.g., Bellavista, Bocas de Patía, Tutunendo, 

Junín and Pto. López); some stations such 
as Carmen de Atrato and La Cumbre, located 
between the limit of the two slopes (1,500 m.a.s.l.) 
present values below 3,000 mm/year. While the 
eastern slopes have an average height of 1,400 
m.a.s.l and rainfall less than 1,700 mm/year 
(e.g., Tormento, Clarita, Toscana and, Univalle). 
Also, some stations in the western margin of 
the central mountain range of the Colombian 
Andes -Nariño, Potreros and, Paraiso- present 
a mean rainfall between 2,000 and 3,000 mm/
year. Conversely, less than 1,000 mm/year has 
been recorded for stations in the eastern margin 
of the western mountain range such as Vijes 
and Guasca.

The difference between the two slopes 
is mainly due to the uniform rainfall regime 
throughout the year in the western region, 
without a defined dry season, due to the 
persistence of the ITCZ, the convergence of 
trade winds in the equator and the Choco Low-
Level Jet (CJ), which interacts with the mesoscale 

Figure 4. Relation between altitude (m.a.s.l.) and annual rainfall (mm) for the CBC stations.
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convective systems (Poveda & Mesa 2000, Zea 
et al. 2000). Meanwhile,  the Andean region 
experiences a bimodal cycle with two wet 
stations, one in MAM and the other in SON, and 
two dry stations during JJA and DJF, due to the 
migration of the ITCZ. This influence is combined 
with the orographic effects of the Western 
Cordillera of the Colombian Andes, which acts 
as a barrier to the moisture transport from the 
Pacific Ocean that discharges more moisture 
on the western slope through orographic 
rainfall  (Poveda et al. 2002, 2011, 2014, Trojer 
2018). Besides, the differences in the Andean 
Region have been previously documented by 
Sedano (2017), which observed greater rainfall 
on the central mountain range, associated with 
a moisture transport from the Pacific Ocean 
that crosses the western mountain range and 

enhances moisture convergence on the western 
margin of the central mountain range between 
1,600 and 2,000 m. a.s.l.

La Plata Basin
Table III presents the RMSE, RMSSE and ASE 
values for the seven tested interpolation 
surfaces in the LPB. The results of the seasonal 
and annual RMSSE indicate that gaussian 
cokriging and, gaussian and exponential kriging 
have the best results with values close to 1 in 
most cases. Exponential (spherical) cokriging 
presented very high RMSSE values for DJF and 
MAM (SON). Low RMSSE values are observed 
in MAM and JJA for spherical kriging. Based on 
the differences between ASE and RMSE, the 
best prediction of variability are presented for 
gaussian cokriging and exponential kriging, 

Table III. Cross-validation comparison for the LPB interpolation models.

Period Statistical 
criteria

Model

Cokriging Kriging
IDW

Sph. Exp. Gau. Sph. Exp. Gau.

DJF

RMSE 37.9 33.8 40.0 38.5 39.7 38.6 37.6

RMSSE 1.0 1.6 1.1 1.0 1.1 1.0

ASE 36.5 25.6 35.3 38.7 35.2 36.7

MAM

RMSE 23.9 21.1 25.3 22.5 25.6 24.2 23.8

RMSSE 1.0 1.3 1.0 0.7 1.0 0.9

ASE 25.5 20.4 24.8 31.8 24.8 27.5

JJA

RMSE 11.4 11.5 13.0 10.9 13.0 11.1 13.3

RMSSE 0.9 0.7 1.1 0.6 1.1 0.8

ASE 15.0 19.5 10.9 19.6 10.9 15.0

SON

RMSE 19.6 19.8 19.4 19.4 19.5 18.7 20.5

RMSSE 1.5 1.1 1.0 1.1 1.0 1.0

ASE 17.1 22.1 20.2 22.2 20.1 19.9

ANNUAL

RMSE 234.1 225.8 253.3 218.7 269.7 234.0 240.6

RMSSE 0.9 0.9 1.0 0.9 1.0 0.9

ASE 269.65 253.92 248.17 255.13 248.17 269.67
RMSE: Root-Mean-Square. RMSSE: Root-Mean-Square Standardized. ASE: Average Standard Error. Sph. is spherical, Exp. is 
exponential and Gau. is Gaussian.
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which tend to overestimate the rainfall in SON 
(ASE > RMSE) and underestimate in the other 
stations. However, on the annual scale, the 
results of gaussian cokriging indicate a better 
ability to predict the rainfall variability. The 
results suggest that the gaussian semivariogram 
for cokriging is the best fitted experimental 
semivariogram for the study of LPB rainfall. 
Following the previous results, Figure 5 shows 

that the values predicted by gaussian cokriging 
are better representing the distribution of 
observed data. So, the annual and seasonal 
rainfalls of the LPB noted in Figure 6 represent 
the results of cokriging with gaussian model.

The annual rainfall for the 1987-2017 period 
shows a west-east gradient with a minimum of 
450 mm in the highest part of the LPB in Bolivia 
and highest values toward the center-west, 

Figure 5. Normal Quantil-Quantil graphs for the annual rainfall interpolations in the LPB.
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with maximum values ​​of 2,000 mm on the 
triple border between southern Brazil, Paraguay 
and northeastern Argentina, near the Atlantic 
Ocean (Figure 6). On the other hand, rainfall is 
also abundant in the north of the basin, where 
values ​​reach 1,500-1,650 mm in the Cerrado and 
Pantanal regions, while in the humid Argentine 
Pampas rainfall reaches only 900 mm per year. 
This distribution is consistent with previous 
results (Boulanger et al. 2005, Barros et al. 2006, 
Bidegain et al. 2017, among others). However, 
rainfall maps provide more information about 
the Chaco and Andean region. The annual 
cycle clearly shows the lowest precipitation 
in the high Andes, especially in the west and 
southwest; highlighting the relationship 
between the annual precipitation and the 
altitude of 170 stations located in the LPB. Only 
a limited number of stations are more than 1,500 
meters above sea level (m.a.s.l.) and all are less 
than 1,000 mm/year (Padilla, Azurduy, Sucre, 
Higueras and Comarapa stations; Figure 7), those 
located at more than 3,000 m.a.s.l. have values 
lower than 500 mm/year (Potosí, Pabellón and 
Villazón stations; Figure 7). Similar results were 
found for the stations of the Andean region 
in the Amazon Basin (Espinoza et al. 2009) 
and in Bolivia (Ronchail & Gallaire 2006). At 
low altitudes, stations that register more than 
2,000 mm/year are lower than 1,000 m.a.s.l. and 
close to the Atlantic Ocean such as Paranaguá 
and Bernardo in Brazil, and Iguaçu and Campo 
Grande in Argentina (Figure 7).

The seasonal rainfall patterns in Figure 6 
show considerable differences between seasons. 
During DJF, the highest values are over the 
north (200mm) and the lowest over the south 
of the basin (< 120mm). During JJA, the highest 
precipitations are concentrated on the eastern 
flank of the basin (60 to 140 mm), close to the 
Atlantic Ocean, while the north and western 
regions present values less than 60 mm quarterly. 

During MAM and SON, the climatological 
patterns show a better distribution of the rains 
on the LPB, however, a core of precipitations 
is perceptible on the Center of the LPB, that 
diminishes towards the west of the basin; this 
core of precipitations presents higher values 
during SON (140 to 200mm) in comparison with 
MAM (120 to 180mm). The climatological results 
coincide with the seasonal precipitation regimes 
found by several authors (Berbery & Barros 
2002, Vera et al. 2002, Gan et al. 2004, Penalba & 
Vargas 2008).

As previously pointed out, the seasonal 
characteristics can vary significantly from one 
region to another (Grimm et al. 1998, Boulanger 
et al. 2005). These authors identified three 
types of precipitation regimes. The first is 
characterized by a minimum marked during JJA 
and abundant maximum during DJF, when the 
superficial heating together with the advection 
of steam in the north favors the convection 
associated with the South American Monsoon 
System that can be observed up to 20° S. The 
annual monsoon cycle begins in September 
when precipitation patterns slowly extend from 
the equatorial region to the south and connect 
with the South Atlantic Convergence Zone along 
the ocean. The development and connection 
of the South Atlantic Convergence Zone with 
South American Monsoon System generates 
a precipitation pattern along a northwestern-
southeastern axis during DJF with the highest 
precipitations north of 20° S (Grimm et al. 1998, 
Boulanger et al. 2005, Barros et al. 2006). The 
Pantanal floodplain plays a key role in storing 
rainfall in Upper Paraguay, delaying its major 
contributions to Paraná in almost six months 
(Comité Intergubernamental Coordinador de los 
Países de la Cuenca del Plata–CIC 2016).

On the other hand, south of 20° S, the central 
portion of the basin reaches its maximum at 
different times of the year, what suggests that 
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Figure 7.  Relation between altitude (m.a.s.l.) and annual rainfall (mm) for the LPB stations.

Figure 6. Annual and seasonal means rainfall in the La Plata Basin (LPB) for the period 1987-2017.
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there is more than one mechanism of action, 
not just the forcing of monsoons. In effect, the 
second type of regime in the central and southern 
ranges of the basin tends to be distributed more 
evenly throughout the year. Thus, a maximum 
center occurs in the central range near the 
common border between Argentina, Brazil and 
Paraguay, during both transition seasons (MAM 
and SON) (Figure 6), accounts for a large part 
of the rainfall in the study domain (Rusticucci 
& Penalba, 2000), and relates to the mesoscale 
convective complexes (Velasco & Fritsch 1987). 
The most important contribution for the rainfall 
with a maximum center in this central region 
during winter is due to the activity of midlatitude 
synoptic scale systems (Vera et al. 2002). In some 
parts of this central region, a third peak can also 
be observed during the summer monsoon (third 
type of rainfall regime).

CONCLUSIONS

Seven interpolation models for annual and 
seasonal average rainfall of 34 years in the 
CBC and 31 years in the LPB were tested and 
compared. The accuracy of the interpolation was 
determined by the cross-validation method. The 
RMSE, RMSSE and ASE were chosen validation 
metrics and were presented in Tables II and 
III. Using the cross-validation method, it was 
observed that of the seven tested interpolation 
surfaces, the spherical model Cokriging (with 
the gaussian model) was the best precipitation 
interpolator in the CBC region (in LPB region). 
These models provided the lowest root mean 
square error (RMSE) and a standardized RMSE 
close to one for almost all cases. The estimated 
values from the Cokriging represent more 
accurately the distribution of the observed 
data than those from the Kriging. On the other 
hand, the Kriging and Cokriging methods 

with the gaussian model presented the worst 
performance for the CBC, with higher RMSE 
and ASE; although IDW shows a lower RMSE, 
the validation showed larger errors on the 
interpolated surface for the two regions.

It was also noted a positive impact of 
elevation as a predictive variable to characterize 
precipitation in the study domain, besides 
corroborating that the Geographic Information 
Systems are powerful tools, that allow to 
surpass the subjectivity of the traditional 
empirical method of interpolating the climate 
data (Andrade & Moreano 2013). In geostatistical 
methods, there are several possibilities for 
incorporating secondary data to improve 
primary data, such as radar, satellite, among 
others. However, in areas with information 
deficits, elevation is a widely available and 
accessible data, which contributes to the 
multivariate analysis of the rainfall (Goovaerts 
2000, Vicente et al. 2003, Lloyd 2005, Atorre et 
al. 2007). Some authors selected the IDW and 
Kriging methods to describe the precipitations 
in Colombia, but they did not present the criteria 
to choose the method (Guzmán 2015, Estupiñan 
2016). The results show the advantage of using 
multivariate geostatistical methods compared 
to the IDW deterministic method for annual and 
seasonal precipitation, when elevation data is 
used as a secondary variable (Goovaerts 2000, 
Lloyd 2005, Ly et al. 2013), providing a great 
benefit in improving the use of these methods to 
interpolate the precipitation of the two regions 
under study. The results in our study may be 
useful for scientists, engineers, hydrologists, 
and decision makers as a prerequisite for their 
use in future environmental and hydrological 
models for the CBC and the LPB.
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