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ABSTRACT

Large-scale hydrological models are extensively used for the understanding of
watershed processes with applications in water resources, climate change, land
use, and forecast systems. The quality of the hydrological results mainly depends on
calibrating the optimal sets of watershed parameters, a time-consuming task that
requires repeated hydrological model simulations. The ever-growing availability of
hydrometeorological data from extensive regions also contributes to the increase in
the demand for more computational resources. The performance of optimization
methods in hydrological applications has been continuously addressed. However,
improving the performance of an application on a modern computer requires a detailed
investigation about the interaction between the application and the underlying system,
to find the techniques that provide the best performance improvements. This thesis
aims at performance optimizations on the well-established MGB hydrological model
(simulation) and the MOCOM-UA method (calibration) for real-world input datasets,
the Purus (Brazil) and Niger (Africa) watersheds. The optimization strategies
investigated in this thesis target state-of-the-art CPU and GPU systems by exploiting
techniques that include AVX-512 vectorization, and multi-core (CPU) and many-core
(GPU) parallelisms, to increase the usefulness of both simulation and calibration
using the MGB model. Significant speedups of up to 20× were achieved on CPU with
the proposed optimizations, while the roofline analysis confirmed that the CPU and
GPU optimizations more effectively exploited the hardware resources, and improved
the overall performance of the MGB model. An additional scalability analysis using
a miniapp of the MGB model indicated that speedups up to 24× (CPU) and 65×
(GPU) can be achieved for larger problem sizes. Moreover, the accuracy of the
simulated results between the nonoptimized and optimized implementations was
quantitatively evaluated, reaching maximum relative errors of approximately 6 %
for discharges and objective functions. The investigated techniques applied on the
MGB model are also valid for other scientific applications where a few key parts
dominate the execution time when processing a large amount of data. Carefully
employing these techniques to optimize such parts may significantly enhance the
overall application performance on current CPUs and GPUs.

Keywords: computer systems performance, CPU/GPU, roofline model, hydrology
models, parameterization
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OTIMIZAÇÃO DE DESEMPENHO DO MODELO HIDROLÓGICO
MGB PARA ARQUITETURAS MULTI-CORE E GPU

RESUMO

Modelos hidrológicos de bacias de grande escala são amplamente utilizados para
a compreensão dos processos de bacias hidrográficas com aplicações em recursos
hídricos, mudanças climáticas, uso da terra, e sistemas de previsão. A qualidade dos
resultados hidrológicos depende principalmente em calibrar os conjuntos ótimos de
parâmetros da bacia, uma tarefa demorada que exige repetidas simulações do modelo
hidrológico. A crescente disponibilidade de dados hidrometeorológicos provenientes
de regiões extensas também contribui para o aumento na demanda por mais recursos
computacionais. O desempenho de métodos de otimização em aplicações hidrológicas
tem sido continuamente abordado. Entretanto, melhorar o desempenho de uma
aplicação em um computador moderno exige uma investigação detalhada sobre
a interação entre a aplicação e o sistema, a fim de encontrar as técnicas que
fornecem os melhores desempenhos. Esta tese busca otimizações de desempenho nos
já bem estabelecidos modelo hidrológico MGB (simulação) e método MOCOM-UA
(calibração) para conjuntos de dados de entrada reais, as bacias do Purus (Brasil) e
Niger (África). As estratégias de otimização investigadas nesta tese visam sistemas
computacionais CPU+GPU atuais explorando técnicas que incluem vetorização
AVX-512, e paralelismos multi-core (CPU) e many-core (GPU) para aumentar a
utilidade de ambas simulação e calibração utilizando o modelo MGB. Speedups
significativos de até 20× foram obtidos em CPU com as otimizações propostas,
enquanto que a análise roofline confirmou que as otimizações em CPU e GPU
exploraram mais efetivamente os recursos de hardware, e melhoraram o desempenho
geral do modelo MGB. Uma análise adicional de escalabilidade utilizando um miniapp
do modelo MGB indicou que speedups até 24× (CPU) e 65× (GPU) podem ser
obtidos para tamanhos de problema maiores. Além disso, a acurácia dos resultados
simulados entre as implementações não-otimizada e otimizada foi quantitativamente
avaliada, atingindo erros relativos máximos de aproximadamente 6 % para vazões
e funções objetivo. As técnicas investigadas aplicadas no modelo MGB também
são válidas para outras aplicações científicas onde algumas poucas partes cruciais
dominam o tempo de execução ao processar uma grande quantidade de dados.
Empregando cuidadosamente essas técnicas para otimizar tais partes pode melhorar
significativamente o desempenho geral da aplicação em CPUs e GPUs atuais.

Palavras-chave: desempenho de sistemas computacionais, CPU/GPU, modelo roofline,
modelos hidrológicos, parametrização
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1 INTRODUCTION

High Performance Computing (HPC) has become an essential part in the development
of scientific knowledge. Most of the recent advances and discoveries in several fields
of science such as climate modeling, protein folding, drug discovery, energy research,
data analysis, artificial intelligence, and universe evolution (PACHECO, 2011) were
possible only through the use of the ever-growing computational resources available
in modern computer systems.

Nowadays, a large number of commercial and research centers employ computers
comprised of different types of technologies and functionalities specifically developed
for parallel processing, namely, multi-core processor or Central Processing Unit
(CPU) with vector extensions, many-core Graphics Processing Unit (GPU), Field
Programmable Gate Array (FPGA), and many other hardware architectures. The
fastest and most powerful existing HPC systems (MEUER et al., 2021) are constantly
used worldwide to tackle problems in the aforementioned fields due to the complex
mathematical models that are associated with those problems, which highly depend
on solutions that demand significant hardware resources. In general, high-performance
computer systems allow researchers to address important scientific questions that
pose big computational challenges.

Hardware architectures with parallel resources are ubiquitous in the scientific
community. Modern CPUs commonly consist of multiple independent cores (some
may feature dozens) (RALSTON, 2008) with additional support to vector extensions,
which also increases the level of parallelism. The current computing landscape also
includes general-purpose GPUs, which are accelerators that implement the SIMT
(Single Instruction Multiple Threads) architecture with a large number of parallel
threads, either hundreds or thousands, for massively parallel workloads.

Both CPUs and GPUs are designed considering a memory hierarchy, providing
different levels of memory that differ in speed and size. Moreover, there
are heterogeneous hardware architectures where the CPU and the GPU are
interconnected, sharing and processing data, and working as one computing device.
Therefore, the particular features of each hardware architecture can be exploited for
performance improvements in computationally intensive applications (HENNESSY;

PATTERSON, 2007).

The parallel hardware resources of modern CPUs can be accessed and used via a
programming interface, or API (Application Programming Interface), available for

1



the development of parallel software on shared and distributed memory systems.
In particular, for shared-memory systems the Open Multi-Processing (OpenMP)
standard is able to produce scalable and portable parallel codes (DAGUM; MENON,
1998), whereas for distributed-memory systems the Message Passing Interface (MPI)
is widely accepted in the parallel community (GROPP et al., 2014). Both interfaces are
constantly employed together in a large number of applications, defining a hybrid
approach that combines MPI and OpenMP. Moreover, high-performance applications
can also be efficiently implemented with the Compute Unified Device Architecture
(CUDA) developed for NVIDIA GPUs (NVIDIA, 2012).

Furthermore, building efficient and portable applications requires additional
performance analysis tools to guide developers on how to fully exploit the hardware
potentials. The Cache-Aware Roofline Model (CARM) (MARQUES et al., 2020; LOPES,
2016; ILIC et al., 2013) is a bound and bottleneck-based tool that identifies the factors
limiting the performance (flops/s) of applications, visually representing the compute
and memory behavior of an application/system pair, thus providing guidelines for
optimizations according to the application’s arithmetic intensity (flops/byte).

Given a specific computer/system, the CARM is based on defining two Cartesian axes,
the abscissa axis with the application’s arithmetic intensity and the ordinate axis
with the computing performance. Each application is characterized by its arithmetic
intensity and computing performance, where either can change according to the
degree of the optimizations. The system’s computing performance for any arithmetic
intensity value is bound by either the memory performance (a slanted line given by
the memory bandwith) or the computing performance (a horizontal line). Therefore,
a 2D region is defined under these lines that resemble a roofline and each vertical
line, which corresponds to a particular arithmetic intensity, is limited by the roofline
to the attainable computing performance of the application.

Applications that involve modeling the complex dynamics of hydrological processes
require significant computational resources and are extremely important in
environmental issues, being the subject of several recent researches that focus on
how natural resources change in our planet. Large-scale hydrological models are
extensively used for the understanding of watershed processes, which are closely
connected to applications in water resources, climate change, land use, and forecast
systems (PAIVA et al., 2011).

Those models simulate complex nonlinear hydrological processes and usually
contain a set of nonphysical parameters, i.e. not measurable from actual data
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measured/acquired in field, which are embedded in the model to function as
conceptual representations that express watershed characteristics, thus allowing
the model simulated responses to satisfactorily adjust to the real-world observed data
and simulate the behavior of the watershed (EFSTRATIADIS; KOUTSOYIANNIS, 2010),
for instance, the watershed discharge. The calibration process is a time-consuming
task that requires repeated model simulations, and consists in estimating the optimal
sets of model parameters that can simulate the watershed behavior, given actual
initial and boundary conditions.

The estimation of the optimal sets of model parameters is solved as an inverse
problem, which is formulated as an optimization problem iteratively solved to
minimize specific objective functions. In this thesis, a stochastic algorithm generates
candidate solutions that are successively evaluated by means of a multi-objective
function, which measures, according to a norm, the difference between simulated and
measured data. Therefore, once the sets of model parameters for a given watershed
are estimated, the parameters can be generically used in subsequent simulations,
providing hydrological responses of higher quality and accuracy.

The present work targets performance optimizations on the MGB hydrological
model (COLLISCHONN, 2001), used for simulations, and the MOCOM-UA multi-
objective calibration method, based on a double-layer approach to execute the MGB
model at each iteration. Two watersheds were chosen for the simulation test cases,
corresponding to the Purus (Brazil) and the Niger (Africa) rivers, but only the former
watershed was employed for calibration.

The MGB model implements a numerical method, referred to as inertial model, that
solves the Saint-Venant equations to estimate water height and discharge (stream flow)
along the longitudinal extension of the river in the watershed (FAN et al., 2014), which
is useful to numerous hydrological applications (FAGUNDES et al., 2020; FLEISCHMANN

et al., 2019; GORGOGLIONE et al., 2019; FLEISCHMANN et al., 2017; PAIVA et al., 2011).
In the MGB model, the watershed parameters are used to set the initial and boundary
conditions for simulations, and also to compute hydrometeorological data such as
radiation, evapotranspiration, and water balance in soil. Therefore, those parameters
are not directly used to compute the water flows with the numerical method, but
instead to update the variables used as input to the inertial model.

The computational time requirements of the calibration phase were reduced by
the optimizations proposed herein that exploit the ever-growing parallel resources
of computer systems. The MGB model was thoroughly optimized for CPU on
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shared-memory systems with vectorization and multi-core parallelism, as well as for
GPU with many-core parallelism implemented as a separate version, whereas the
MOCOM-UA calibration method was optimized for CPU with OpenMP.

Fully exploiting the hardware resources not only decrease the overall execution times
of the MGB model and improve the performance of the calibration procedure, but also
provide more understanding about the MGB model’s computational requirements.
Moreover, the main hydrological results of the optimized implementations, both
simulation and calibration, are compared with the original results for a quantitative
analysis of the numerical solution of the optimized version.

The roofline characterization of the MGB model identifies how the memory and
compute hardware resources of the employed architectures are more effectively
exploited with the proposed optimizations, and allows to evaluate the achieved levels
of optimization, revealing that careful and effective use of the capabilities of each
system may achieve performance improvements. The mixing of explicit vectorization
and directive-based parallelization, proposed as a set of advanced optimizations by
exploiting most of the capacity of vector resources and shared-memory parallelism,
offers more opportunities for improving the performance of hydrological models with
similar characteristics.

A scalability analysis using a miniapp, a reliable proxy of the MGB model developed
to process larger problem sizes, shows the performance gains achievable if large
datasets of either high-resolution data or more extensive watershed regions are
available. Miniapps are considered as testbeds that should accurately model the
performance bottleneck of the full application (STONE et al., 2012), and also be able
to scale the problem size while matching the performance. The prediction of how
the full application is affected by prototype changes, and the evaluation of new
algorithms, data structures, and programming models are major issues investigated
using miniapps in different real-world applications (MURAI et al., 2017; LIN et al.,
2015).

1.1 Motivation

As previously mentioned, many scientific applications are complex and demand
ever-growing computational resources, which can be supplied with the design of
highly parallel computer systems. Such systems are able to handle bigger amounts
of data in shorter execution times, thus providing more processing power to solve
larger instances of problems.
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Exploiting the features available in the current parallel hardware architectures
of CPUs and GPUs helps scientists and researchers to produce more reliable
results from more precise and detailed datasets. In addition, getting most of the
performance out of these architectures depends on how the application makes use
of the hardware resources, so improvements on performance analysis techniques
covering each architecture are essential to increase the knowledge about the processing
times, speedups, scalability behavior, and upper-bound performance limits of the
applications on such architectures.

In particular, the optimization of the MGB model has a major impact in the
hydrology community. Research centers such as IPH-UFRGS and CPTEC-INPE in
Brazil are constantly employing the MGB model in several environmental applications,
producing important scientific contributions, significant advances towards mitigating
climate change, and also positive effects on increasing knowledge in many fields
related to hydrological modeling.

1.2 Objectives

This thesis aims at performance optimization and analysis of a hydrological
application comprised of the MGB hydrological model, employed in simulations and
in calibration with parallel optimization strategies using either CPU or CPU+GPU
architectures. The performance analysis uses basic measures such as runtimes and
speedups, and also the CPU and GPU roofline characterizations, which are useful to
evaluate and compare the achieved levels of optimization for each architecture. In this
thesis, the following optimization strategies were investigated for the implementations:

• CPU vectorization using Intel AVX-512 vector instructions (SIMD
paradigm) with Intel Intrinsics;

• Multi-core CPU thread parallelism with OpenMP;

• Many-core GPU data parallelism with CUDA (SIMT paradigm).

1.3 Contributions

The contributions of this thesis are:

• Explicitly vectorized and directive-based, highly optimized MGB model for
multi-core CPUs with vector extensions;
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• Optimized data-parallel version for many-core GPU accelerators;

• Optimized implementation of the MOCOM-UA calibration method for
multi-core CPUs;

• Additional CPU and GPU miniapps implemented as reliable proxies of the
MGB model, extending executions to larger problems for detailed scalability
analysis;

• CPU and GPU roofline model characterizations as a mean to verify the
evolution of the MGB model’s performance improvements.

To the author’s knowledge, the optimizations proposed herein are the first that
employ explicit vector instructions with Intel Intrinsics for hydrological models.
Also, this is the first time that the roofline model has been employed to analyze
performance improvements in a hydrological model.

1.4 Thesis organization

This document is organized as follows. Chapter 2 contains a detailed description of the
current technology of parallel hardware architectures available on HPC systems and
the programming interfaces used to exploit those hardware resources. This chapter
also illustrates the use of parallelism in other hydrological models. Chapter 3 presents
the MGB hydrological model (simulation), including equations, model structure, and
code analysis, as well as the MOCOM-UA method (calibration). Chapter 4 describes
the optimizations performed on the MGB model and the MOCOM-UA calibration
method. In Chapter 5, the computer systems and datasets employed are described,
the performance improvements obtained with the optimizations are discussed, and
the scalability analysis of the MGB model is evaluated. Chapter 6 provides CPU
and GPU roofline analysis of the MGB model and quantitative accuracy analysis of
the hydrological results. Chapter 7 presents the conclusion together with suggestions
for future work.
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2 BACKGROUND ON HIGH PERFORMANCE COMPUTING AND
HYDROLOGICAL APPLICATIONS

This chapter describes the hardware and software technologies used for optimizations
in this thesis. The hardware characteristics of multi-core CPUs and many-core
GPUs are provided, also including fundamental knowledge of software programming
interfaces such as Intrinsics (vectorization), OpenMP (multi-core parallelism), and
CUDA (many-core parallelism). The roofline model is introduced, and related works
that explored parallelization of hydrological applications are summarized.

2.1 Multi-core CPUs

The development and availability of parallel hardware resources has become a
standard since HPC systems started to provide high-performance solutions to big
computational problems. Historically, the need for performance forced CPU designers
to increase the clock speed of the processors. However, there is a limit to the rate of
instructions that can be executed inside a CPU due to power consumption and heat
emission, which is hard to dissipate. To solve this problem, processors were designed
with separate compute units referred to as cores, so performance gains could be
achieved with the processing power of multiple independent cores.

Besides the design of multiple cores in a single processor, the set of memory units or
caches also changed in order to improve the access from each core to the data stored
in memory. Cores have access to a hierarchical memory set comprised of faster but
smaller private caches, and slower but larger shared caches. Most CPU architectures
include two levels of private memory (L1 and L2 caches), and one level of shared
memory (L3 cache). Usually, the L1 cache is divided into L1 data cache (L1d) and
L1 instruction cache (L1i). Figure 2.2(a) exhibits the scheme of a processor or CPU
with n cores numbered from 0 to n−1 that access private and shared caches.

2.1.1 Vectorization

Most modern CPUs support vector extensions that provide data-parallel strategies
such as Single Instruction Multiple Data (SIMD), as shown in Figure 2.2(b). Vector
processing requires data to be contiguously stored into CPU registers of fixed size
(in bits), so that vector instructions can be concurrently executed on all registers.
Particularly, current Intel CPUs support different types of vector extensions, namely,
SSE (128 bits), AVX/AVX2 (256 bits), and AVX-512 (512 bits), which are accessible
via assembly instructions or via the Intel Intrinsics library (INTEL, 2019).
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Figure 2.1 - Hardware features of multi-core CPUs.

(a) CPU scheme. (b) SIMD operation.
SOURCE: (a) Author, (b) Intel (2019).

Code 2.1 is an example in the C programming language that illustrates an explicit
SIMD code for the array sum of Figure 2.2(b), computed with vector instructions of
the Intel Intrinsics library, which is available in C/C++. In this case, AVX-512 vector
instructions are used for processing double-precision arrays (64 bits), so the loop
iterates the arrays with stride equal to 8, i.e. 8 elements are loaded from memory,
simultaneously added, and then stored into memory.

Code 2.1 - Stride-8 loop for array sum with Intel Intrinsics in C.

1 #include <immintrin.h>
2
3 void array sum(double ∗A, double ∗B, double ∗C, int ∗N) {
4 m512d vecA, vecB, vecC;
5 int i;
6
7 for(i = 0;i < ∗N;i+=8) {
8 vecA = mm512 load pd(A+i);
9 vecB = mm512 load pd(B+i);
10 vecC = mm512 add pd(vecA, vecB);
11 mm512 store pd(C+i, vecC);
12 }
13 }

For more complex applications, hand-tuned vectorized codes execute faster than
the auto-vectorized equivalents because compilers are not able to fully identify all
the instructions that can be executed in parallel. However, explicit vectorized codes
employ low-level instructions that requires careful and detailed code analysis, and
more development time. Mitra et al. (2013) consistently observed speedups of up to
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5.32× with SSE vector instructions (128 bits) using Intel Intrinsics for single-precision
floating-point data in several applications from different benchmarks.

2.1.2 Multi-core CPU parallelism

In addition to vector instructions, the wide availability of multiple cores in modern
CPUs enables thread-parallel strategies to be further explored in shared-memory
environments. In this type of optimization, the workload is processed in parallel after
being distributed among threads, which are associated to the multiple CPU cores.

Thread-level parallelism on shared-memory environments is usually designed with
the OpenMP standard (DAGUM; MENON, 1998) available in C/C++ and Fortran.
OpenMP provides compiler directives and a library of functions that distribute
independent workloads to the processor cores. The main types of parallel processing
with OpenMP are data and task parallelism, where the former is for arrays and
matrices that are divided up in parts among the cores, whereas the latter allows
functions to be simultaneously called by different cores.

OpenMP threads can view variables as either private or shared, depending on how
data must be accessed. Specific directives are used for thread synchronization to
ensure correctness of results, avoiding data race conditions, and different schemes of
workload distribution can be specified with particular clauses for more efficient load
balancing to improve the use of the available CPU hardware resources. OpenMP
executes a fork/join type of parallelism that dynamically activate/deactivate parallel
threads during the execution of a program. The master thread spawns multiple threads
as requested (fork), and when the parallel work finishes all threads are terminated
(join). Code 2.2 illustrates the array sum optimized with OpenMP in Fortran.

Code 2.2 - Shared-memory parallel array sum with OpenMP in Fortran.

1 subroutine array sum(A, B, C, N)
2 use omp lib
3 integer i, N, A(N), B(N), C(N)
4
5 !$omp parallel do private(i) shared(A,B,C,N) num threads(8)
6 do i=1,N
7 C(i) = A(i)+B(i)
8 end do
9 !$omp end parallel do
10 end subroutine
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Optimizations that exploit CPU parallel resources such as vector instructions and
multiple cores generally result in improvements on the performance of applications.
However, performance gains depend on the complexity of the application, particularly
on the pattern of memory accesses. For example, accessing data that is not
contiguously stored in memory usually decreases performance because the frequency
of accessing data located in lower levels of memory, i.e. L3 cache and DRAM, is
higher. Programmers must write codes to more efficiently store data in memory in
order to improve as much as possible the memory access patterns.

Figure 2.2 shows different memory access patterns that commonly occur in
applications (JANG et al., 2011). Each type of memory access incurs more or less
latency for either reading or writing data. Accessing contiguous data in memory
without skipping memory positions, and following the standard direction of data
storage (Linear) is the optimal memory access pattern, whereas randomly accessing
memory positions without a clear access pattern (Random) decreases performance,
for not benefiting from the sequential data storage in memory.

Figure 2.2 - Different memory access patterns commonly found in applications.

SOURCE: Jang et al. (2011).

The overall performance of applications increases with the use of parallel hardware
resources not only because workloads can be divided and distributed among multiple
parallel compute units, but also because executing more computations in parallel
effectively hides the latency of accesses to memory. As hardware architectures consist
of separate functional units for memory and compute instructions, parallel programs
are able to execute larger amounts of computation while memory is accessed for
reading/writing data. Therefore, exploiting the available parallel resources of hardware
architectures enhances the memory efficiency of applications.

In a parallel program, increasing the number of compute units decreases the execution
time. However, communication time increases and, at some point, it becomes higher
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than the computation time, so that the execution time does not decrease. The
use of more compute units usually speeds up the execution of the program, but
only if the amount of data can be divided with enough computations to hide the
latency of memory accesses and of communication. These situations lead to the
concepts of granularity and scalability, i.e. the ratio between computation time and
communication/synchronization time (QUINN, 2004), and the performance behavior
with increasing number of compute units (CHAPMAN et al., 2008), respectively.

For shared-memory programs parallelized with OpenMP, each thread must be
allocated a particular set of resources, including which memory regions can be
accessed. Whenever more than one thread accesses the same memory location,
mainly for executing write instructions of shared variables, synchronization directives
are necessary to ensure that only one thread executes the instruction at a time,
avoiding a data race condition in order to guarantee the correctness of the parallel
program. Consequently, synchronization reduces granularity and causes performance
degradation, and this impact is more pronounced if the number of threads increases.

However, even though increasing the number of threads in a parallel program also
reduces granularity, performance still improves if all threads are assigned enough
data for computations, hiding synchronization effects and the latency of memory
accesses. As an example, applications with larger proportions of compute instructions
per bytes accessed from memory, and also larger percentages of code that can be
parallelized, are likely to scale more efficiently, thus resulting in higher performance
and parallel speedup (HILL; MARTY, 2008).

At this point, it is important to add that the performance of a parallel program
can be theoretically predicted with measures that indicate how much performance
improvement is possible to be achieved by increasing the number of threads. The
parallel speedup is the ratio between the sequential and parallel execution times,
i.e. how many times the parallel execution is faster than the sequential execution.
The Amdahl’s law (QUINN, 2004) provides an upper bound on the parallel speedup
achievable with p processors, depending on the fraction f of operations that must be
sequentially executed, where 0≤ f ≤ 1. The maximum speedup ψ is given by equation
(2.1), which does not consider the time lost with overheads of communication and
synchronization.

ψ≤ 1
f+(1−f)/p (2.1)
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2.2 Many-core GPUs

In addition to the use of multi-core CPUs, the current computing landscape
also includes GPUs as general-purpose processors for data-parallel codes. GPU
architectures are classified as many-core for consisting of a massive amount of
arithmetic compute units (either hundreds or thousands), thus providing more
processing power for numerical intensive integer and floating-point workloads. GPU
performance is much higher when compared to CPU, as shown in Figure 2.3.

Figure 2.3 - Theoretical peak performance between different CPUs and GPUs for data in
single-precision (left) and double-precision (right).

(a) Performance in single-precision. (b) Performance in double-precision.
SOURCE: Adapted from Rupp (2016).

This difference in performance motivates software developers to exploit the potential
of GPUs to reduce the execution time of applications. The porting of codes to
GPUs is usually done with frameworks such as CUDA (NVIDIA, 2019a), OpenCL
(TOMPSON; SCHLACHTER, 2012), and OpenACC (WIENKE et al., 2012), each with
its advantages and disadvantages. For example, OpenACC is based on compiler
directives similar to OpenMP, which provides codes that are easily portable to
different GPU architectures. However, in most cases, the highest performance is
achieved with the CUDA framework, although it requires more effort and time of
development.

Besides the advantages in the optimization of numerical applications, GPUs are not
suited to tasks that involve either too much transfer of data between host (CPU) and
device (GPU) memories or communication with the operating system and control of
I/O devices. These latter tasks should be assigned to CPUs, which have control logic
units with more complex instructions (KIRK; HWU, 2017).
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GPUs are designed with a set of high bandwidth memories that increases the
performance even more. Similarly to CPU architectures, GPUs also consist of
hierarchical memory sets, although there are more specific types of memory rather
than the traditional scheme of DRAM and caches of CPUs. For instance, each
NVIDIA GPU architecture has its own characteristics, but usually the L1 cache or
local memory is the private memory of each thread, whereas the shared memory is
the private memory of each block shared by all threads in the block. The L2 cache is
shared by all blocks as the Last Level Cache (LLC). Texture and constant memories
are read-only memories, the former for graphic purposes, and the latter for storing
constants and parameters (LOPES, 2016). The device or global memory is the larger
but slower memory accessible by all threads.

The compute performance and memory bandwidth related to the GPU hardware are
essential to the GPU roofline analysis used in this work. The peak performance of
GPUs is computed from the total number of cores C and the clock frequency Fc set
to the GPU cores, where the actual value is multiplied by two because each core has
Fused Multiply-Add (FMA) instructions that execute two floating-point operations
(multiplication and addition) in one cycle. Thus, the maximum performance P
achievable by a GPU, in flops/s, is given by equation (2.2).

P=2×Fc×C (2.2)

Bg=rg×
wg

8 ×Fg (2.3)

Bs=
bs

8 ×Fc (2.4)

Analogously, the peak bandwidth Bg of the global memory, in bytes/s, is computed
from the memory’s data rate rg (transfers per cycle), bus width wg (in bits), and
clock frequency Fg, as in equation (2.3). In addition, the peak bandwidth Bs of
the shared memory, given by equation (2.4), is computed from the total number of
bits transferred per clock cycle bs and the clock frequency of the cores Fc. However,
the bandwidth BL2 of the L2 cache is not simple to be quantified because its value
depends on how the GPU architecture works, requiring benchmarks specifically
developed to exploit all in-depth details of the architecture (LOPES, 2016).

2.2.1 Many-core GPU parallelism

The many-core GPU parallelism employed in this thesis uses the CUDA framework.
CUDA offers an interface for sharing data between host and device memories, as well
as internal structures for identifying each parallel thread from the organization scheme
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defined for threads inside the GPU. In particular, NVIDIA GPUs are comprised of
multiple Streaming Multiprocessors (SMs), and each SM contains a specified number
of CUDA cores or floating-point units. All threads are arranged in sets of 32 threads
called warps in multi-dimensional blocks inside the SMs, which are grouped in a
multi-dimensional grid (NVIDIA, 2012). This scheme is illustrated in Figure 2.4.

Figure 2.4 - Organization of blocks and threads as viewed by CUDA inside NVIDIA GPUs.

SOURCE: NVIDIA (2019b).

CUDA was originally supported by programming languages such as C/C++ in 2007,
and extensions were created for Fortran in 2009. The functions called from the host
to be executed on the device are referred to as CUDA kernels. Each thread in a kernel
is initially identified from the block index in the grid, and then from the thread index
inside the block. After threads are assigned unique identification numbers (thread
IDs), each thread can process independent workloads accessing data from memory
indexed by the thread ID.

Transfer of data between host and device memories for reading and writing data is
executed either before or after calls to kernels. In addition, calls to CUDA kernels
use a syntax that includes both the number of blocks and threads per block to be
allocated in the device, where the number of blocks is usually computed as the ratio
between the problem size and the number of threads per block.
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Code 2.3 exhibits the CUDA kernel for the parallel array sum. Firstly, the thread ID
is stored into variable i used to check all valid array positions, which are accessed
by one single thread and processed in parallel. The kernel is called from the host as
call array_sum<<<cudaBlocks,cudaThreadsPerBlock>>>(), where cudaBlocks
and cudaThreadsPerBlock specify blocks and threads per block, respectively.

Code 2.3 - Parallel array sum in CUDA Fortran.

1 subroutine array sum(A, B, C, N)
2 i = blockDim%x∗(blockIdx%x-1)+threadIdx%x
3 if(i <= N)then
4 C(i) = A(i)+B(i)
5 end if
6 end subroutine

2.3 Roofline model

The performance analysis of applications usually considers measures from two basic
hardware components of computer systems: processor and memory. Applications that
require intensive use of the compute units of processors are limited by the compute
performance of the hardware architecture, whereas others that demand more memory
accesses are bounded by the bandwidth of the available memory hierarchy. Therefore,
there is a close relationship between the potential compute and memory capabilities
available in computer systems and the behavior of the applications executed on such
systems.

The roofline model (WILLIAMS et al., 2009; WILLIAMS, 2008) is a valuable tool that
provides insights about the behavior of applications on computer systems with
diverse features and capabilities of processor and memory. The development and
optimization of applications can be guided by the model for better utilization of the
hardware resources, aiming at performance improvements.

More specifically, the roofline model uses the arithmetic intensity I, in flops/byte, of
an algorithm to identify whether its performance on a particular system is bounded
by either compute or memory limits. On a computer system with peak floating-point
processor performance F (flops/s) and peak memory bandwidth B (bytes/s), the
maximum attainable performance P for I is P = min {B×I, F}.

However, the arithmetic intensity used in the Original Roofline Model (ORM)
is computed only from off-chip memory transfers between the Last Level Cache
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(LLC) and the DRAM, which is not sufficient to fully describe the performance
of applications on modern hardware architectures. A more precise roofline model,
referred to as Cache-Aware Roofline Model (CARM) (MARQUES et al., 2020; ILIC et

al., 2013), also accounts for the on-chip memory traffic with data transfers between
all cache levels, providing a more accurate behavior of the applications on computer
systems designed with current hardware technology.

As previously described, the roofline model consists of a 2D plot, with axes typically
on logarithmic scale, that relates arithmetic intensity and performance, which are
placed on the x and y axes, respectively. Compute and memory roofs indicate the
fixed upper-bound limits of performance that can be reached on the underlying
hardware depending on the arithmetic intensity of the application. Standard compute
roofs are for scalar, vectorized, and FMA computations, each in single-precision and
double-precision. Memory roofs commonly specify the performance achieved with
the bandwidth of each type of memory from the memory hierarchy of the hardware
architecture, including caches and DRAM. These latter roofs are more precisely
found through the use of micro-benchmarks that exploit each level of memory with
particular low-level memory instructions, which decrease the latency of memory
measures.

Figure 2.5 exhibits a simplified roofline model with compute and memory roofs
that are the upper-bound limits of performance. As an example, two applications of
different arithmetic intensity are illustrated (red dashed lines), one compute-bound,
and other memory-bound. The point where the roofs meet is known as the ridge point,
i.e. the minimum arithmetic intensity required for attaining maximum performance.
The ridge point of computer systems shifts from right to left with increasing memory
bandwidths. The closer the ridge point is to the y-axis, the larger is the number of
applications that can reach higher performance.

Besides the performance analysis of applications with the roofline model from CPU
hardware architectures, some works recently explored the roofline model from GPU
devices, particularly from NVIDIA GPUs (YANG et al., 2019; LOPES, 2016; JIA et al.,
2012; KIM et al., 2011). CPU and GPU roofline models are similar models because
both include compute and memory roofs, although the roofs for GPUs are usually
higher, as GPUs provide more performance than CPUs due to the massive amount
of compute units and the high bandwidth memories, when compared to the current
performance achieved by the compute units and the memory hierarchy associated to
multi-core CPUs.
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Figure 2.5 - Roofline model with compute and memory roofs as the upper-bound limits of
performance for applications with different arithmetic intensity.

SOURCE: Adapted from Williams et al. (2009).

Previous works that use the GPU ORM for performance analysis (YANG et al., 2019;
JIA et al., 2012; KIM et al., 2011) do not fully characterize the behavior of applications
on GPUs, as the GPU ORM considers data transfers only between LLC and global
memory. The GPU CARM approach (LOPES, 2016) fully explores the GPU hardware
architecture, thus providing a more in-depth characterization of applications.

This thesis employs the GPU CARM for the roofline model characterization from
NVIDIA GPUs. In this case, flops and bytes are collected with the CUDA component
of the Performance API (PAPI) (DONGARRA et al., 2001), a widely used interface
that can access hardware performance counters from a large number of CPU and
GPU architectures. More specifically, the performance counters selected to collect
flops include double-precision, single-precision, and special (mathematical functions)
floating-point operations, whereas the performance counters selected to compute
transferred bytes include load and store transactions per memory request, which
differ in number depending on the GPU architecture. Therefore, the arithmetic
intensity and performance for the roofline characterization are computed from these
particular GPU hardware performance counters.

2.4 Parallelization of hydrological applications

Several factors affect the efficiency of large-scale hydrological models, which usually
demand large amounts of computations for more accurate simulations of water
flows. The main factors include the continuous advances in GIS software and
technologies, the increase in the availability of high-resolution spatial and temporal
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hydrometeorological data, such as in-situ measurements and remote sensing data, the
great extent of the regions processed in the simulations, and the number of model
parameters. In calibration, manual trial-and-error selection of the optimal sets of
watershed parameters is still a predominant procedure despite being a time-consuming
task, even for experienced model users. Computer-based automatic methods provide
an alternative solution, and have recently been considered as an effective and efficient
option for calibration using hydrological models (VRUGT et al., 2003).

Different hydrological models were modified with either CPU or GPU optimizations
aiming at performance improvements. A simplified version of the LISFLOOD-FP
model (BATES et al., 2010), named LISMIN model, reached theoretical speedups with
OpenMP and MPI (NEAL et al., 2010), but without processing 1D channel flow and
dry checking functions, and more recently was optimized to compute 2D water flows
and depths on GPU using the CUDA framework (SARATES, 2015).

OpenMP was also applied on a grid-based Fully Sequential Dependent Hydrological
Model (FSDHM) to process simulation units based on a layered approach, computing
overland and channel flows in parallel (LIU et al., 2014). MPI was used in the
SWAT model (ARNOLD et al., 1998) with a scheme devised to decrease execution
times by reducing the overheads of communication (WU et al., 2013), and in the
tRIBS model (VIVONI et al., 2011) to decompose watersheds, formed by triangulated
irregular networks (TINs), as directed graphs from drainage network channels, where
independent sub-basins were assigned to MPI processes exchanging data across
boundaries.

The performance of calibration methods in hydrological applications is a key issue
that has been continuously addressed by employing different optimization and parallel
computing techniques, mainly designed and applied to large-scale hydrological models
with the purpose of reducing the runtimes for calibrating watershed parameters. The
computational efficiency of the single-objective SCE-UA method (DUAN et al., 1993),
processing up to millions of objective function evaluations, was improved by using
parallel implementations of the Xinanjiang model (ZHAO, 1992) designed for CPU
(OpenMP) and for GPU (CUDA) (KAN et al., 2018). Furthermore, Zhang et al. (2016)
proposed a double-layer parallel approach for a genetic algorithm-based calibration
method, using the DYRIM model (WANG et al., 2007), with parallelism in the spatial
decomposition of the watershed, divided into independent units (lower-layer), and
also in simultaneous model simulations with different combinations of parameters
(upper-layer).
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A large number of calibration methods using the SWAT model were also optimized.
MPI and Python were employed to parallelize the multi-objective AMALGAM
calibration method with concurrent evaluations of simulations (ZHANG et al., 2013).
The Python multiprocessing module was used to develop a parallel multi-objective
calibration tool (MAMEO) for multi-core processors (ZHANG et al., 2012). A
framework based on the optimization program SUFI2 for the SWAT-CUP calibration
procedure automatically and transparently submit parallel jobs on multi-core CPUs
(ROUHOLAHNEJAD et al., 2012).

Although those other hydrological models employed traditional parallelization
techniques, no effort has been previously employed on vectorization. Similarly, most
of those models do not contain some of the advanced modeling capabilities available
in the MGB model, which is described in the next chapter. Thus, exploring advanced
vectorization/parallelization techniques for the MGB model that can benefit from
the hardware features of modern processors is highly desirable, and was the main
focus of this thesis.
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3 MGB HYDROLOGICAL MODEL AND MOCOM-UA
CALIBRATION METHOD

This chapter introduces the fundamental background for the hydrological application
considered in this thesis. The MGB hydrological model is described with details
of equations, units of spatial discretization, scheme of numerical solution, and
code structure. The MOCOM-UA calibration method is also presented, including
main features and steps executed by the method to optimize, according to the
objective functions, the sets of parameters used in the MGB model simulations. The
implementations consist of 52 Fortran source files, with a total of 3 k lines of code.

3.1 MGB hydrological model

The MGB (“Modelo de Grandes Bacias”) hydrological model (COLLISCHONN, 2001)
is developed at IPH-UFRGS (“Instituto de Pesquisas Hidráulicas”-“Universidade
Federal do Rio Grande do Sul”) in Brazil, focusing on improving the knowledge of
hydrological processes in large-scale watersheds, mainly in the South America region.
Simulations of the MGB model generate 1D propagation of water flows in rivers as
illustrated in Figure 3.1, which exhibits the elevation z, water height h, water level y,
discharge q, and length ∆x of each segment of the river stretch discretization from
the numerical scheme detailed in Subsection 3.1.1.

Figure 3.1 - River stretch discretization.

SOURCE: Adapted from Fan et al. (2014).
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The model simulates the hydrological cycle computing soil water and energy budgets,
evapotranspiration, interception, surface, subsurface, and groundwater flows, in either
daily or hourly time steps, for the forecast of river discharge, analysis of extreme
events (floods and droughts), estimation of the effects of soil and vegetation cover
on climate, water quality and sediment transport (PAIVA et al., 2011). The spatial
discretization of the MGB model is comprised of three hydrological units: catchments,
sub-basins, and hydrological response units (HRUs). Catchments and sub-basins
consist in surface regions that contribute water to drainage network segments and
to outlet points, respectively, whereas HRUs are regions that usually combine land
use, land cover, soil and slope maps based on user-defined thresholds (KALCIC et al.,
2015).

Figure 3.2 illustrates the catchments (smallest spatial units) delineated for a
drainage network of the Purus watershed. The drainage network was defined from a
threshold of accumulated flows equal to 10 000 m2 and generated with the TerraHidro
computational platform for distributed hydrological modeling (JARDIM, 2017; ROSIM,
2008).

Figure 3.2 - Watershed of Purus river and catchments of each drainage network segment.

SOURCE: Author.
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The MGB model has been effectively employed in a diverse and large number of
applications, such as sediment modeling for estimation of soil erosion, sediment
transport and deposition (FAGUNDES et al., 2020), modeling of reservoirs as an
internal boundary condition for simulation of hydrodynamic processes and their
interaction with upstream and downstream floodplains (FLEISCHMANN et al., 2019),
analysis of water conflicts in transboundary watersheds to improve the sustainability
of water allocation (GORGOGLIONE et al., 2019), representation of the interactions
between hydrology and hydrodynamics, mainly infiltration from floodplains into
soil, to improve model estimates (FLEISCHMANN et al., 2017), and hydrological and
hydrodynamic modeling to simulate fluvial processes of wave delay and attenuation,
backwater effects, flood inundation and its effects on flood waves (PAIVA et al., 2011).

3.1.1 Water flow equations and numerical scheme

The spatial and temporal distribution of the water flows in a watershed, usually
measured by hydrological variables such as water height and discharge, is computed
in the MGB model through an implementation of the inertial simplification (FAN et al.,
2014) of the Saint-Venant equations (CUNGE et al., 1980), a set of partial differential
equations also known as shallow water equations. These equations are referred to
as continuity (3.1) and momentum (3.2) equations, where h is water height, q is
discharge, y=h+z is water level given by the sum of water height h and elevation
z, g is the acceleration of gravity, n is the Manning coefficient, t is time, and x is
longitudinal distance.

∂h

∂t
+∂q

∂x
=0 (3.1)

∂q

∂t
+gh∂y

∂x
+g |q|qn

2

h7/3 =0 (3.2)

Equations (3.1) and (3.2) are numerically solved with forward-in-time and centered-
in-space finite difference approximations that integrate through time from initial
conditions computed from soil moisture, water volumes, and water flows in
reservoirs, and also boundary conditions from accumulated flows (Muskingum-Cunge)
and reference discharges. The numerical solution is a particular scheme of wave
propagation that is commonly employed in rainfall-runoff hydrological models. The
explicit numerical scheme is shown in equations (3.3)-(3.7), where c is the number of
catchments that form the watershed, and i and k are spatial and temporal indexes,
respectively.
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The time steps computed for each catchment i from equation (3.3) require 0<α< 1
in order to avoid numerical instability (BATES et al., 2010), where α= 0.7 in the MGB
model (FAN et al., 2014). In addition, the minimum time step ∆t corresponds to the
current maximum water height hk

i among all catchments. The water height hk
i+1/2

at position i+1/2 (border) is computed from the difference between the maximum
values of water level y and elevation z at positions i and i+1, as in equation (3.4).

The discharge qk+1
i+1/2 of the outflow of each catchment, computed for the next time

step k+1, is found through equation (3.5), and depends on the previous discharge
qk

i+1/2, water height hk
i+1/2, and water levels yk

i+1 and yk
i . Finally, the water height

hk+1
i and level yk+1

i , computed for the time step k+1 at position i (center), are
obtained from the updated discharges qk+1

i+1/2 and qk+1
i−1/2, as in equation (3.6), and

from the water height hk+1
i , as in equation (3.7), respectively.

∆t=min(α ∆x√
ghk

i

), i= 1, 2, . . . , c (3.3)
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k
i+1)−max(zi, zi+1) (3.4)
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(
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i+1/2−q
k+1
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)
(3.6)

yk+1
i = zi+hk+1

i (3.7)

The numerical scheme comprised of equations (3.3)-(3.7) is computed m times for
each of the c catchments, wherem is a constant factor that depends on the input data,
so that the computational complexity of this numerical scheme is O(m.c). Therefore,
the amount of computations executed by the MGB model to find the numerical
solution at each time step is mostly determined by the number of catchments c, as
this value is the only one that can theoretically increase without limits.

3.1.2 MGB code structure

The numerical scheme of the MGB model is referred to as inertial model, which is
divided into three routines inside the model, namely, timestep (STE), discharge
(DIS), and continuity (CON). These routines are successively called for each
minimum time step ∆t that satisfies the condition for the inertial model’s stability,
being accumulated until reaching the time step specified for the MGB model.
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The computations of each routine are executed for all iterations of the MGB model,
a fixed number of steps defined in the input data. The routines of the inertial model
iterate over each catchment computing the minimum time step in the STE routine,
from equation (3.3), water height and discharge in the DIS routine, from equations
(3.4)-(3.5), and water height and level in the CON routine, from equations (3.6)-(3.7).

Besides solving the Saint-Venant equations, the MGB model also computes
hydrometeorogical data such as radiation, evapotranspiration (Penman-Monteith
equations) (SHUTTLEWORTH, 1993), and vertical water balance in soil (COLLISCHONN,
2001) for surface, subsurface, and groundwater flows. However, the inertial model is
the main part executed in the MGB model, and the time length of each execution
varies with the minimum stable time step ∆t that is computed from the input data.

Code 3.1 provides a simplified scheme of the MGB model’s code structure. This code
includes the calls to the routines that are used to load the rainfall and climate
data (load rainfall climate data), to compute the hydrometeorogical data
(calc radiation, calc evapotranspiration, and calc water balance), and to
execute the inertial model for computing water flows with the numerical scheme
previously described (inertial model).

The STE routine computes time steps for all catchments from equation (3.3),
executing a reduction operation to find the minimum time step Dt used in the
DIS and CON routines. The DIS routine, which accounts for the largest percentage
of execution time, updates the river discharge from equations (3.4)-(3.5) for the CON
routine, which uses equations (3.6)-(3.7) to update the water height and level, as well
as the water volume and its corresponding cross-sectional area. Next, the inertial
model repeats by executing again the STE routine with the updated water height
from the CON routine, and this process continues as long as the minimum time step
Dt accumulates to the time step MGBDt of the MGB model.

3.1.3 Profiling of serial execution

Based on serial executions of the original MGB code, compiled with default
optimization flags, the three routines of the inertial model, i.e. STE, DIS, and CON,
were identified as the most time-consuming routines from reports obtained with the
GNU’s gprof profiling tool. Those routines accounted for the highest percentage of
total execution time from either thousands or millions of calls for different simulations,
taking on average 92.96 % of execution time, and thus constituting the main execution
bottleneck of the MGB model.
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Code 3.1 - Structure of the MGB model.

1 subroutine inertial model()
2 ineTotDt = 0.0 ! initialize time step of the inertial model
3 ! repeat inertial model until the time step of the MGB model is reached
4 do while(ineTotDt < MGBDt)
5 call STE()
6 call DIS()
7 call CON()
8 ineTotDt = ineTotDt+Dt ! accumulates time step of the inertial model
9 end do
10 end subroutine
11
12 program MGB model()
13 read input
14 step = 0 ! initialize iterations of the MGB model
15 do while(step < MGBTimeSteps) ! process iterations of the MGB model
16 call load rainfall climate data()
17 call calc radiation()
18 call calc evapotranspiration()
19 call calc water balance()
20 call inertial model() ! call inertial model to solve the numerical scheme
21 step = step+1
22 end do
23 write output
24 end program

Table 3.1 provides the profiling details, including the average (mean value) runtime
and percentage of execution time of each routine relative to the execution time of
the MGB model, and also the number of calls. The values reported were obtained
from simulations using different datasets.

Table 3.1 - Profiling information from serial executions of the MGB model.

Name Runtime (s) % of time Calls
STE 3.36 2.71 634K/1.2M
DIS 67.78 54.69 634K/1.2M
CON 44.07 35.56 634K/1.2M
Other 8.73 7.04 -
MGB 123.94 100.00 -
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3.2 MOCOM-UA calibration method

Calibration methods can be either local (iterating from an initial solution to
the optimal one) or global (generating sets of possible solutions), and typically
employ objective functions, computed from model simulations, as measures to be
minimized for the optimization of the sets of parameters. Some methods focus
on only one objective function, such as the search-based and evolutionary Shuffled
Complex Evolution (SCE-UA) method (DUAN et al., 1993), commonly employed using
hydrological models. However, single-objective methods do not provide solutions
that can truly model the behavior of the observed data in hydrological simulations,
particularly in the extreme situations of wet and dry periods (TIAN et al., 2019).

In contrast, multi-objective methods were developed and employed in hydrological
modeling to evaluate and capture various properties of the observed data, with the
critical advantage of providing hydrological models high-quality parameters that
are estimated to produce more consistent and accurate simulated results (VRUGT

et al., 2003), even in extreme events of floods and droughts. More specifically, the
Multi-Objective Complex Evolution (MOCOM-UA) method (YAPO et al., 1998) has
been successfully applied to a variety of environmental applications (FAGUNDES

et al., 2019; GERITANA et al., 2014; ISLAM; DÉRY, 2017; TATSUMI, 2016; TESEMMA

et al., 2015), being predominantly used for general-purpose global multi-objective
optimization. In addition, an epidemic genetic algorithm (EGA) (ARAÚJO et al., 2013)
was proposed as a variant of the MOCOM-UA method, to be employed in calibration
using the IPH2 hydrological model developed for small basins (TUCCI, 2005).

The MOCOM-UA method formulates the estimation of the sets of model parameters
as an inverse problem that is implicitly solved, i.e. successively generating candidate
solutions that try to minimize multiple objective functions, which express the
difference between simulated and measured data. The calibration procedure is
based on determinism to converge to the local/global optimal solutions (simplex
search), probability to better explore the search space escaping from local minima
(random search), evolution to improve the solutions (population evolution), and
nonuniqueness of solutions to provide multiple optimal solutions (Pareto front).
However, the optimal solutions are never assured to be found, only suboptimal
solutions, as it is not possible to ensure that a given solution is optimal, specially
in multi-dimensional problems. The MOCOM-UA method is widely adopted as an
effective and efficient global multi-objective method, being selected in this thesis for
the optimization of the sets of watershed parameters used in the MGB model.
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Similarly to other optimization methods, the MOCOM-UA method generates a
population with a fixed number of candidate solutions, or independent samples, in a
multi-dimensional search space where each dimension represents a particular model
parameter. Each solution or sample corresponds to a point in the multi-dimensional
space with coordinates given by the parameter values, which are randomly computed
from restricted ranges of the domain for the initial iteration. Each combination
of parameters is used in simulations, and the objective function values, computed
from the observed and simulated data, are compared to rank all samples according
to the Pareto ranking. In this ranking, a sample with all objective function values
greater than the corresponding ones from another sample is considered inferior, and
identified as dominated, otherwise it is nondominated.

Firstly, all nondominated samples are ranked 1, then the remaining dominated
samples are checked, and the new nondominated ones are ranked 2, and so on. In
the end, the worst-ranked samples are ranked RMAX (maximum rank). The optimal
set of samples (sets of parameters) is located in the region of the objective space
called Pareto front, as exhibited in Figure 3.3, which consists of all feasible solutions
that are equally acceptable as optimal solutions, although each solution defines
a set of parameters with unique objective function values. In the Pareto ranking,
lower-ranked samples are considered superior and located closer to the Pareto front.

Figure 3.3 - Objective space for two objective functions F1 and F2 with the Pareto front
(blue) and ranked samples (numbered dots).

SOURCE: Adapted from Vrugt et al. (2003).
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All worst-ranked samples are improved with specific operations, namely, reflection and
contraction (simplex search), using other samples randomly selected (random search)
in relation to a probability distribution obtained from the ranks of each sample,
where samples with smaller (larger) rank values have higher (lower) probability to
be selected. The simplex operations applied on each worst-ranked sample sw require
r more samples, where r is the number of parameters, thus forming a simplex of
r+1 samples. In this process, a new sample is generated from the sample sw and
the centroid sc of the other r samples, either from the reflection or the contraction
operation.

Firstly, the reflection operation is executed, and if the new sample sref is considered
nondominated relative to the r selected samples, it replaces sw, otherwise the new
sample scon obtained from the contraction operation replaces it. The reflection and
contraction operations for sref and scon are given by equations (3.8) and (3.9),
respectively. Finally, new samples replace old ones in the population (population
evolution), the Pareto ranking is recalculated, and this procedure repeats until
all samples have rank 1. The flowchart of the MOCOM-UA calibration method is
exhibited in Figure 3.4.

sref = 2sc−sw (3.8)

scon = 0.5(sc+sw) (3.9)

It is worth noting that each possible feasible solution represents particular
characteristics of the watershed due to trade-offs between the objective functions, as
improving one causes the deterioration of at least another one. More specifically, the
calibration in this thesis particularly employs three objective functions (SORRIBAS et

al., 2013), shown in equations (3.10)-(3.12), where NT is the number of time steps.

Equation (3.10) is the Nash-Sutcliffe model efficiency coefficient (NSE) (NASH;

SUTCLIFFE, 1970), computed from values of observed discharge Qobs, average observed
discharge Qobs, and simulated discharge Qsim, whereas equation (3.11) considers the
NSE computed from the natural logarithm of the discharge values (NSElog). Both
NSE and NSElog are within the range (−∞,1], where 1 means the best fit. Equation
(3.12) is a bias, or systematic error, between the simulated and observed discharges
(ERR), given as a percentage.

29



Figure 3.4 - Flowchart of the MOCOM-UA calibration method.

SOURCE: Author.
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As already pointed out, the calibration procedure in hydrological applications is a
time-consuming task that requires computational resources for extensive periods
of time, as it demands hundreds or thousands of executions of the hydrological
model in order to obtain suboptimal sets of model parameters. It is common to
observe calibration executions that take weeks or even months to finish on single
current-generation CPUs.
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4 PERFORMANCE OPTIMIZATION TECHNIQUES

This thesis employs the MOCOM-UA method as the calibration procedure that finds
the sets of watershed parameters using the MGB hydrological model for simulations.
The optimizations on the calibration and simulation parts follow the double-layer
approach, where the MGB model’s simulations are simultaneously executed on
different CPU cores (upper-layer), and each simulation is parallelized (lower-layer).
The types of optimization selected to boost the performance of the MOCOM-UA
method and of the MGB model consist in data-parallel and thread-parallel strategies:
vectorization, multi-core CPU and many-core GPU parallelisms.

The upper-layer part employs multi-core CPU parallelism (OpenMP) for processing
MGB simulations with different samples (parameter sets) θi (i= 1, 2, . . . , s) in parallel,
where s is the number of samples. The lower-layer part implements at least one of three
types of optimization (Intrinsics, OpenMP, CUDA) for the parallel computations of
all catchments that form the watershed. The MGB model’s profiling, as shown in
Subsection 3.1.3, revealed that the routines of the inertial model constitute the main
execution bottleneck, accounting for the highest percentages of total execution time,
so the focus of the optimizations was on those routines. Figure 4.1 illustrates the
parallelization scheme.

Figure 4.1 - Parallel scheme of calibration procedure with simultaneous MGB model
simulations (upper-layer) and parallel processing of catchments (lower-layer).

SOURCE: Author.

4.1 Simulation: MGB model

As already described, the routines of the inertial model implement an explicit
numerical scheme devised to process all catchments of the watershed that form a
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domain that can be divided into independent subdomains, which in turn are updated
using only previous values of water flows. This scheme is different from implicit
numerical schemes that would require a system of equations to be solved at each
time step (HOFFMAN, 2001). Each routine of the inertial model includes a single loop
that iterates over the catchments with successive and independent memory accesses,
defining codes highly suitable for different parallelization strategies.

4.1.1 Optimizations for CPU

The multi-core CPU optimizations proposed herein employ explicit vectorization,
via interoperability between the Intel Intrinsics library available in C/C++ (INTEL,
2019) and the Fortran MGB model’s code, and OpenMP parallelization. The use
of OpenMP provides portable optimized codes, although the vectorization requires
specific CPU hardware resources (AVX-512 vector extensions). These optimizations
are illustrated in detail for the STE routine, which is the first routine called in the
inertial model, and that processes each catchment to compute the minimum time
step ∆t, as in equation (3.3). The OpenMP threads are created outside the routine
in a parallel region declared for simultaneous independent calls to the inertial model.

Code 4.1 exhibits the STE routine optimized with vectorization and thread parallelism.
In this case, the input variables used for the computations are the height h of the
water flow (Hflow), the length ∆x of the river stretch (Lriver), the constant α
(alpha ), the constant of gravity g (g ), the time step value (Dt), the minimum
time step of each thread (minLocalDt[]), the thread identification (th), the number
of threads (NTH), and the number of catchments (NC). The constant α is multiplied
by the length of the river stretch ∆x (Dx), and then divided by the square root of
the constant g multiplied by the height of the water flow h (h).

The variables declared as m512d type are vector variables that store multiple data
into the CPU registers for the data-parallel vector processing. Firstly, the local
minimum time step minLocalDt of each thread th, and the corresponding vector
values minDt, are initialized with the time step of the MGB model (largest time
step possible), passed as the argument Dt. The constants α and g are also initialized.

After the initialization, the loop of catchments is processed by the OpenMP threads,
so that each thread cooperates by executing the computations from a number of
iterations multiple of 8*NTH, whereas the remaining iterations are sequentially
processed outside the routine. The stride value of 8 means that 512-bit CPU registers
and vector instructions (load, mul, div, sqrt, min) are used to simultaneously
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process eight 64-bit double-precision data, computing time steps for catchments in
parallel. Moreover, the OpenMP clause for static scheduling uniformly distributes
the workload, which is well balanced in the loop iterations that execute similar
instructions.

Code 4.1 - STE routine optimized for CPU with Intrinsics and OpenMP.

1 void STE CPU(Hflow, Lriver, alpha , g , Dt, minLocalDt[], th, NTH, NC) {
2 m512d minDt, alpha, g, h, Dx, num, denom, DtCatchment;
3 int i, NCVec;
4 minLocalDt[th] = Dt; // initialize minimum time step of each thread
5 minDt = mm512 set1 pd(Dt); // initialize minimum time step
6 alpha = mm512 set1 pd(alpha ); // initialize constant alpha
7 g = mm512 set1 pd(g ); // initialize constant g
8 NCVec = NC-NC%(8∗NTH);
9 #pragma omp for schedule(static) // process loop iterations in parallel
10 for (i = 0;i < NCVec;i+=8) {
11 // load data: water height and river length
12 h = mm512 load pd(Hflow+i);
13 Dx = mm512 load pd(Lriver+i);
14 // compute time steps
15 num = mm512 mul pd(alpha, Dx);
16 denom = mm512 mul pd(g, h);
17 denom = mm512 sqrt pd(denom);
18 DtCatchment = mm512 div pd(num, denom);
19 // compute minimum time steps of catchments
20 minDt = mm512 min pd(minDt, DtCatchment);
21 }
22 // compute local minimum time step for each thread
23 minLocalDt[th] = mm512 reduce min pd(minDt);
24 // wait for all threads and compute global minimum time step
25 #pragma omp barrier
26 if (th == 0) for(i = 0;i < NTH;i++) Dt = min(Dt, minLocalDt[i]);
27 }

Whenever each thread th finishes processing the loop iterations, its minimum time
step is locally computed with a minimum reduction vector operation (reduce), and
separately stored into minLocalDt[th]. Finally, all threads wait at a synchronization
barrier to ensure that all local minimum time steps are promptly available, so that
the master thread (th = 0) can update the global minimum time step Dt. The STE
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routine is the only routine that requires a synchronization mechanism for ensuring
thread safety and correct behavior with multiple threads.

The DIS and CON routines follow similar optimizations, although more extensive
and complex, so the full codes are not shown here, only a simplified version. The DIS
routine executes the computations from equations (3.4)-(3.5) to update the discharge
q of each catchment, as illustrated in Code 4.2. All catchments are processed using as
input variables the elevation z of the river bottom (Z), the water height h (Hflow)
used to compute the water level y, the length ∆x (Lriver) and the width of the river
stretch, the Manning coefficient n (Mann), the current discharge q (Qflow), the
minimum time step ∆t (Dt) computed in the STE routine, the constant of gravity
g (g), and the reference to the downstream catchment (Down), which is the single
catchment where the water flows from a particular catchment.

Code 4.2 - DIS routine optimized for CPU with Intrinsics and OpenMP.

1 void DIS CPU(Z, Hflow, Lriver, Mann, Qflow, Dt, g, Down, NTH, NC) {
2 m512d Z1, Y1, Z2, Y2, Hfl, Lrv, Dwn, Dy, Qfl, n, Num;
3 int i, NCVec;
4 NCVec = NC-NC%(8∗NTH);
5 #pragma omp for schedule(static) // process loop iterations in parallel
6 for(i = 0;i < NCVec;i+=8) {
7 (Z1,Hfl,Lrv,Dwn) = load(Z+i,Hflow+i,Lriver+i,Down+i);
8 msk = mask(Dwn != -1); // downstream flow is present
9 Y1 = add(Z1,Hfl,msk);
10 (Z2,Y2) = add(Z1,Y1,Hfl,msk);
11 Dy = sub(max(Y1,Y2),max(Z1,Z2)); // equation (3.4)
12 (Qfl,n) = load(Qflow+i,Mann+i);
13 Num = sub(Qfl,div(mul(g,Dt,Dy,Y1,Y2),Lrv));
14 Qfl = div(Num,add(1,div(mul(g,Dt,Qfl,n),Dy))); // equation (3.5)
15 store(Qflow+i,Qfl); // store updated discharge Qflow
16 }
17 }

The DIS routine also executes various arithmetic vector instructions, but it
additionally includes logical vector instructions, referred to as mask vector
instructions, that function as logical conditions to concurrently check whether the
downstream water flows are present or not for each catchment (line 8). These
instructions provide vector masks that indicate which catchments require the
discharge q to be updated, i.e. only where the downstream water flow is present.
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Code 4.3 - CON routine optimized for CPU with Intrinsics and OpenMP.

1 void CON CPU(Dt, Qflow, QUp, Evap, Rain, Lriver, MGBDt, Tab, VTab, ATab,
ZTab, Volume, Area, Hflow, Yflow, NTH, NC) {

2 m512d SumQ, Qfl, Vol, Lrv, Evp, Rn, Ar, VPos0, VPos1, f, Hfl, Yfl;
3 m512d VTb0, ATb0, ZTb0, VTb1, ATb1, ZTb1;
4 int i, NCVec;
5 NCVec = NC-NC%(8∗NTH);
6 #pragma omp for schedule(static) // process loop iterations in parallel
7 for(i = 0;i < NCVec;i+=8) {
8 for(j = 0;j < 8;j++) QSum[j] = acc(QUp+64∗i+8∗j,NUp); // upstream sums
9 SumQ = load(QSum);
10 (Qfl,Vol,Lrv) = load(Qflow+i,Volume+i,Lriver+i);
11 (Evp,Rn,Ar) = load(Evap+i,Rain+i,Area+i);
12 Vol = calcVol(SumQ,Qfl,Vol,Evp,Rn,Ar,Dt,MGBDt);
13 VPos0 = load(Tab+i); // initial range position
14 do { // table search
15 VPos1 = inc(VPos0); // final range position
16 (VTb0,ATb0,ZTb0) = gather(VPos0,VTab,ATab,ZTab);
17 (VTb1,ATb1,ZTb1) = gather(VPos1,VTab,ATab,ZTab);
18 VgeMsk = mask(Vol >= VTb0);
19 VltMsk = mask(Vol < VTb1);
20 f = calcFrac(Vol,VTb0,VTb1); // volume fraction
21 Ar = calcArea(ATb0,ATb1,f,VgeMsk,VltMsk);
22 Yfl = calcY(ZTb0,ZTb1,f,VgeMsk,VltMsk);
23 nBitsRange = sumBits(VgeMsk,VltMsk);
24 if(nBitsRange == 16) break; // 8 left/right positions
25 VltMsk = mask(Vol < VTb0);
26 VPos0 = sub(VPos0,VltMsk); // decrement positions
27 VgtMsk = mask(Vol > VTb1);
28 VPos0 = add(VPos0,VgtMsk); // increment positions
29 }
30 while(true);
31 Hfl = sub(Hfl,mul(div(Dt,Lrv),Qfl)); // equation (3.6)
32 Yfl = add(ZTb0,Hfl); // equation (3.7)
33 store(Tab+i,VPos0); // update positions for table search
34 store(Area+i,Ar,Yflow+i,Yfl,Hflow+i,Hfl,Volume+i,Vol);
35 }
36 }
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The CON routine uses the minimum time step ∆t (Dt) from the STE routine, and
the discharge q (Qflow) from the DIS routine. Catchments are also independently
processed, using input variables such as the discharges from the upstream catchments
(QUp), evapotranspiration (Evap), rainfall (Rain), the length ∆x of the river stretch
(Lriver), the MGB model’s time step (MGBDt), as well as the range positions
(Tab) of precomputed water volumes (VTab), cross-sectional areas (ATab), and
elevations (ZTab) that are stored in nondecreasing order as fixed 2D tables for
each catchment. This routine updates the variables of water volume (Volume), the
cross-sectional area (Area), water height h (Hflow), and water level y (Yflow) as
shown in Code 4.3, which are used in the next iteration of the inertial model.

More specifically, the sum of the upstream discharges of each catchment (line 8) is
initially computed with a sum reduction vector operation by collecting and adding
up the discharges from the upstream catchments. The upstream discharge values
were adapted in the optimized routine to be contiguously arranged in memory, thus
allowing the vector instructions to execute more efficient memory accesses. The
upstream discharges are used to compute the new water volumes of the catchments
(line 12), and each catchment searches its own table of water volumes for the new
value. The table search retrieves precomputed water volumes, cross-sectional areas,
and elevations from the ranges that include the new water volume, where gather
vector instructions collect these values from the memory positions that correspond to
the selected ranges (lines 16,17). The new water volume is used to compute a volume
fraction for the interpolation of the cross-sectional area and water level (lines 21,22).
The boundaries of the selected ranges are checked with vector masks (lines 25,27),
and the table search shifts either left or right to locate the ranges that contain the
new water volumes. The search stops when all ranges are found (line 24), and the
current range positions are updated (lines 26,28).

Figure 4.2 illustrates the relation between the catchments and the water volume
table. Table rows store the precomputed water volumes V for each catchment
1≤ i≤ c, and the eight positions stored into the vector variables VPos0 and
VPos1 specify the ranges that contain the current water volumes: Vi,j−1≤Wi <Vi,j ,
Vi+1,j+1≤Wi+1 <Vi+1,j+2, Vi+2,j+6≤Wi+2 <Vi+2,j+7, and so on. Groups of eight
values of the water volumes V , located in the range [VPos0,VPos1], are collected
from memory positions using a gather vector instruction (gather) and compared using
a logical vector instruction (masks) with the volumesW of the catchments. Whenever
the water volumes W are updated, the current positions VPos0 independently shift
for each catchment, moving either left or right (table columns) to the new range.
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Figure 4.2 - Table search of the CON routine.

SOURCE: Freitas et al. (2020a).

4.1.2 Optimizations for GPU

Besides the CPU optimizations, the STE, DIS, and CON routines were also executed
on GPU as CUDA kernels with the CUDA Fortran programming interface (NVIDIA,
2020a), supported by the PGI pgf90 compiler (PGI, 2020). The CUDA framework was
chosen because we previously applied directive-based GPU programming standards
(OpenACC) on the MGB model (FREITAS; MENDES, 2019), but that particular
optimization decreased the MGB model’s performance. The low performance was
mainly caused by the overheads associated to the OpenACC directives, introduced
to the runtimes from millions of routine calls. Those overheads were not amortized
by the thousands of loop iterations (number of catchments), i.e. the computations
were not GPU intensive.

Current NVIDIA GPU architectures provide thousands of parallel threads, which
is enough to cover all loop iterations in the routines of the inertial model for the
available datasets, so that the CUDA kernels assign each parallel thread to one single
catchment, increasing the degree of parallelism. In the CUDA implementation, the
variables of the inertial model were globally declared as device variables in a Fortran
module, and data was transferred between host (CPU) and device (GPU) memories
by directly copying values through the assignment operator.
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Code 4.4 illustrates the Fortran module with the CUDA version of the STE routine,
which required an explicit minimum reduction operation to compute the minimum
stable time step ∆t of the inertial model, executed in one single CUDA block for
thread synchronization. CUDA does not include the minimum reduction functionality
as a predefined operation, differently from Intel Intrinsics and OpenMP that provide
a library function and a directive clause, respectively.

Code 4.4 - STE routine optimized for GPU with CUDA Fortran.

1 module kernel ste cuda
2 contains
3 attributes(global) subroutine ste cuda
4 use vars cuda ! global module of variables
5 integer i ! local variables
6 i = blockDim%x∗(blockIdx%x-1)+threadIdx%x ! thread ID
7 ! process loop iterations in parallel
8 if (i <= NC) then
9 localDt(i) = alpha∗Lriver(i)/(g∗Hflow(i))∗∗0.5 ! compute time steps
10 end if
11 end subroutine
12
13 attributes(global) subroutine dt cuda
14 use vars cuda ! global module of variables
15 integer i, pow, pow2NC ! local variables
16 i = blockDim%x∗(blockIdx%x-1)+threadIdx%x ! thread ID
17 ! compute minimum time step with explicit minimum reduction in parallel
18 pow = pow2NC/2
19 do while (pow > 0)
20 if (i <= pow) then
21 ! update first half of the array with minimum local dt
22 localDt(i) = min(localDt(i), localDt(i+pow))
23 end if
24 call syncthreads() ! synchronize threads
25 pow = pow/2 ! access only half of the array in the next iteration
26 end do
27 ! update global minimum time step computed from threads
28 if (i == 1) Dt = localDt(1)
29 end subroutine
30 end module
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Firstly, each thread is identified from internal CUDA structures and stored into the
variable i (line 6), where blockDim%x, blockIdx%x, and threadIdx%x are the
dimension (size) of the CUDA blocks, the index of the CUDA block, and the index of
the thread inside the CUDA block, in this order, for the dimension x of the CUDA
grid. The variable i is used as an index to the array position of each catchment, which
must be checked if it is a valid index, i.e. not larger than the number of catchments
NC (line 8).

All valid threads compute the time steps of the catchments in parallel in the ste cuda
routine, independently storing the values into the localDt array (line 9). Next, the
dt cuda routine executes the minimum reduction operation in one single CUDA
block, processing only half of the array (positions pow, line 18), thus simultaneously
computing and updating the minimum time step between positions i (first half) and
i+pow (second half) (line 22). The size pow2NC is equal to the smaller power of
two that is either greater than or equal to NC.

Therefore, the minimum time step values are kept only in the first half of the array,
all threads are synchronized with the CUDA function syncthreads() (line 24), and
this procedure repeats by halving pow at each iteration of the reduction operation
(line 25), so that in the end the global minimum time step is stored into the first
position of the localDt array. Finally, the value localDt(1) is used to update the
global minimum time step Dt (line 28) for the DIS and CON routines, which also
implement equivalent CUDA versions for execution on GPU.

4.2 Calibration: MOCOM-UA method

The calibration procedure based on the MOCOM-UA method is implemented using
the MGB model to find the optimal sets of parameters for a particular watershed.
The MGB model’s parameters selected for calibration are shown in Table 4.1, which
includes soil parameters that largely affect the hydrological responses in wet and dry
periods (COLLISCHONN, 2001). Those parameters are defined in the MGB model
to set the initial and boundary conditions for simulations, and also to compute the
hydrometeorological data, i.e. radiation, evapotranspiration, and water balance in
soil. The ranges in Table 4.1 specify multipliers for the parameters relative to the
initial value.

In addition to the optimizations on the MGB model (simulation), which include
vectorization with Intel Intrinsics, multi-core parallelism with OpenMP, and many-
core parallelism with CUDA, like discussed in the previous section, the calibration
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Table 4.1 - MGB model’s watershed parameters selected for calibration.

Parameter Description Range Initial value

Wms
Maximum water storage capacity for
forest on shallow soil (mm) [0.1,1.1] 700.0

Wmd
Maximum water storage capacity for
forest on deep soil (mm) [0.6,1.1] 900.0

Kgrn
Maximum percolation on saturated soil
for groundwater flows (mm/day) [0.3,1.8] 0.5

Ksub
Maximum percolation on saturated soil
for subsurface flows (mm/day) [0.3,1.8] 5.0

b Shape measure from relation between
storage and saturation [0.3,1.8] 0.1

CS Delay correction for propagation of
surface flows [0.1,2.0] 10.0

CI Delay correction for propagation of
subsurface flows [1.0,4.0] 50.0

CB Delay correction for propagation of
groundwater flows [0.7,6.7] 1500.0

was also optimized for performance improvements. From the flowchart in Figure
3.4, the steps of simulating the MGB model with the current set of samples and
of evolving the population of samples with simplex operations require most of the
computational resources in the calibration procedure, as both steps execute complete
simulations of the MGB model.

The former step executes the MGB model to compute the simulated discharge values
that are used to evaluate the objective functions for each set of parameters in order
to update the Pareto ranking of all samples. The latter step executes simulations for
all worst-ranked samples modified with simplex operations, i.e. the samples located
far from the Pareto front. As the samples are independent from each other, it is
possible to process all of them in parallel for both steps.

However, for the parallel executions of the MGB model to properly work, each
sample requires separate executions of four routines that are successively called
in the calibration procedure to: (a) set the values of the parameters, (b) set the
initial and boundary conditions, (c) simulate the MGB model, and (d) compute
the objective functions. Each sample is assigned a new Pareto rank only after these
routines have been completely executed for all samples. Code 4.5 illustrates the
calibration implementation parallelized with OpenMP for simultaneous MGB model’s
executions, where s is the only input argument that is used to define the number of
samples (sets of parameters) to be optimized in the calibration procedure.
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Code 4.5 - Calibration procedure of the MOCOM-UA method.

1 subroutine MOCOM calibration(s)
2 call initial random parameters(samples population(s))
3 !$omp parallel do num threads(NCORES) schedule(static,1)
4 do i=1,s ! th = thread ID, set with get thread num(th)
5 call set parameters(samples population(i),th)
6 call set conditions(i,th)
7 call MGB model(i,th) ! execute on either CPU or GPU
8 call objective functions(i,th)
9 end do
10 !$omp end parallel do
11 ! loop for parameter optimization
12 do while (RMAX > 1) ! initially, RMAX = s
13 call pareto ranking(samples population)
14 call samples probability(samples population)
15 call simplex ops(worst samples(NRMAX,2)) ! reflection=1/contraction=2
16 !$omp parallel do num threads(NCORES) schedule(static,1)
17 do i=1,NRMAX ! th = thread ID, set with get thread num(th)
18 call set parameters(worst samples(i,1),th) ! reflection
19 call set conditions(i,th)
20 call MGB model(i,th) ! execute on either CPU or GPU
21 call objective functions(i,th)
22 if (worst samples(i,1) is nondominated) then
23 call replace sample(samples population, worst samples(i,1))
24 else
25 call set parameters(worst samples(i,2),th) ! contraction
26 call set conditions(i,th)
27 call MGB model(i,th) ! execute on either CPU or GPU
28 call objective functions(i,th)
29 call replace sample(samples population, worst samples(i,2))
30 end if
31 end do
32 !$omp end parallel do
33 end do
34 end subroutine

The initial random parameters routine allocates the s samples in the
samples population array (line 2), storing the initial random parameter values
of each sample. After the initialization, the samples are independently processed
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in a loop with the aforementioned routines, so that all loop iterations process the
samples in parallel (upper-layer), simultaneously executing the set parameters,
set conditions, MGB model, and objective functions routines required for
the initial Pareto ranking of all samples. This loop (line 4) is parallelized with an
OpenMP directive that assigns each loop iteration (sample) to one single thread,
where the number of threads is set to NCORES (number of CPU cores). The clause
schedule(static,1) cyclically assigns one loop iteration at a time to the threads.

Following the initialization loop, the calibration procedure starts and repeats while
there are samples to be improved, i.e. there is at least one sample with Pareto
rank greater than one (RMAX> 1, line 12). Firstly, the pareto ranking routine
(line 13) assigns ranks to the samples computed from the objective function values,
and each rank gives a probability value that is assigned to the sample in the
samples probability routine (line 14). The NRMAX worst-ranked samples are
selected, and the reflection and contraction simplex operations are executed in the
simplex ops routine (line 15) in order to generate two new samples for each worst-
ranked sample, so that one of these new samples updates the current population of
samples by replacing the corresponding worst-ranked one.

The loop that updates the population of samples (line 17) is also parallelized with
OpenMP. The reflection sample is attempted first (line 18), and if it is accepted,
i.e. if it is considered a nondominated sample (line 22), the new reflection sample
replaces the current worst-ranked sample (line 23), otherwise the contraction sample
replaces it (line 29). After all worst-ranked samples are processed, the condition of
the calibration loop is retested in order to check whether the calibration procedure
continues or not.

In the calibration, the MGB model executes on either CPU or GPU (lower-layer),
whereas all the other routines execute only on CPU. In addition, it is worth mentioning
that the random probability value, which is generated to select samples for the simplex
operations, determines how fast the worst-ranked samples move towards the Pareto
front, so that the execution times of different calibration runs can randomly vary
even with the same initial set of samples.

The insertion of parallelism on the calibration procedure for simultaneous executions
of the aforementioned routines required a thorough adaptation of the MGB model
and the MOCOM-UA method implementations to avoid data race conditions. All
global variables used in the set parameters, set conditions, MGB model, and
objective functions routines needed an extra dimension to be allocated as the
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total number of parallel threads (NCORES) and independently indexed by each
thread ID (variable th in Code 4.5). Moreover, all variables used in other routines
such as radiation, evapotranspiration, and water balance in soil, had to be locally
defined to be private to each thread. This adjustment was carefully made to hundreds
of variables in order to ensure that all simultaneous executions of those routines
correctly worked, not interfering with each other while the calibration was executed.

As an additional modification made to the calibration procedure, a different
implementation considers the parallel processing of more samples from the population,
not only the worst-ranked samples. This approach tries to further increase the
performance of the current implementation, by also selecting the samples with Pareto
ranks just below the worst rank RMAX, i.e. RMAX-1, RMAX-2, and so on. The
purpose of this strategy is to process and improve a larger number of bad samples at
the same iteration of the calibration procedure, while still maintaining the quality
of the calibration results, so that the objective function values remain close to the
values achieved by the original calibration.

This proposed approach has the advantage of more efficiently exploiting the hardware
resources. By executing the calibration loops with the number of OpenMP threads
equal to the number of available CPU cores, the degree of parallelism increases
because more samples can be processed in parallel. Therefore, more parallel threads
are simultaneously working, reducing the amount of core resources that remain idle.
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5 COMPUTATIONAL PERFORMANCE RESULTS

This chapter presents the execution times (runtimes) and corresponding speedups
(ratio between sequential and parallel runtimes) achieved by the optimized
implementations, which are basic measures for performance analysis. The
computational testbed and input datasets are also presented.

5.1 Computational testbed

The computational testbed employed to conduct the experiments consists of two
multi-core CPU+GPU computer systems with Linux CentOS 7.5 that include Intel
19.0.5, NVIDIA 10.2, and PGI 19.10 software development tools. The hardware
specification of each computer system is detailed in Table 5.1 that exhibits the
processor and memory capabilities of the CPU and GPU architectures.

The floating-point double-precision CPU performance and the DRAM memory
bandwidth were experimentally obtained with the Intel Advisor performance analysis
tool (INTEL, 2020). Both CPU architectures are based on Intel’s Skylake that supports
AVX-512 vector instructions (512 bits). The bandwidth of L1 (shared) and L2 caches
of GPUs are from load throughput found with specific micro-benchmarks (JIA et al.,
2018).

Table 5.1 - Computer systems used as computational testbed.
Name system01 system02

Architecture
CPU GPU CPU GPU

Intel Core Pascal Intel Core Volta
i7-7820X GP104 i9-7900X TitanV

P
ro

ce
ss

or Cores 8 2560 10 5120
Frequency (GHz) 3.60 1.77 3.30 1.46

Performance
(Gflops/s)

919.5 283.2a 1052.6 7475.2

D
R

A
M Size (GB) 32 8 64 12

Bandwidth
(GB/s)

40.3 320.3b 68.5 652.8b

L1 Size (kB) 32 48 32 48
Bandwidth (GB/s) 3874.1 3555.0 5377.3 12080.0

L2 Size (MB) 1 2 1 4.6
Bandwidth (GB/s) 1813.4 979.0 1473.6 2155.0

L3 Size (MB) 11 - 13.75 -
Bandwidth (GB/s) 226.7 - 317.8 -

a1/32 of FMA single-precision performance. bFrom NVIDIA tool.
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5.2 Input datasets

Different datasets were used as input to the MGB model providing hydrometeorogical
data from two regions of the world. These regions are the locations of the watersheds
of the Purus and Niger rivers. The Purus river is one of the main tributaries of the
Amazon river in Brazil with drainage area of 370 000 km2 and average discharge of
11 000 m3/s (PAIVA et al., 2011). This region (Figure 5.2(a)) is mostly covered by
tropical rainforests, which provide high annual rainfall rates, and the watershed
topography ranges from 10 m, at the outlet, to 581 m, at the highest headwater,
measured from the Shuttle Radar Topography Mission (SRTM) 30 m topographic
data (FARR et al., 2007).

The Niger river (Figure 5.2(b)) covers the Guinea highlands and the Sahel desert, and
is the largest river in West Africa with drainage area of 657 000 km2 (FLEISCHMANN

et al., 2017) and average discharge of 900 m3/s (MAHÉ et al., 2009). The geographical
region of this river presents semi-arid climate with large seasonal variation in rainfall
and river flow (ZWARTS et al., 2005), where approximately 40 % of the water available
from the headwaters are lost due to either evaporation or infiltration processes, and
also because of the small number of tributaries along the extension of its watercourse.
The construction of dams and irrigation systems provides solutions of hydroelectric
structures to optimize the scarce water availability.

Figure 5.1 - Regions of the Purus (left) and Niger (right) rivers used as input datasets.

(a) Purus river and watershed inside the
Amazon region.

(b) Niger river and watershed in West
Africa.

SOURCE: (a) Author, (b) Fleischmann et al. (2017).
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Both input datasets were provided by IPH-UFRGS as worst-case datasets for these
regions, requiring high computational effort to be processed. Each input dataset
contains discrete data for the hydrological units of catchments, sub-basins, and HRUs
(spatial), for each time step (temporal). Two datasets were used for the Purus region,
one for simulation and other for calibration, whereas the dataset for the Niger region
is only for simulation. The total number of catchments, sub-basins, HRUs, and time
steps are displayed in Table 5.2.

Table 5.2 - Input datasets used in the MGB model for simulation and calibration.

Dataset Purus Niger
SIMa CALb SIMa

Catchments 1984 2957 4307
Sub-basins 16 1 9

HRUs 9 9 11
Time steps 4747 5486 5800
aSimulation. bCalibration.

5.3 Performance on multi-core CPUs and many-core GPUs

This section presents the performance of the simulation (MGB model) and calibration
(MOCOM-UA method) implementations. The results include both the CPU and
GPU performance achieved on each computer system for the available input datasets.

5.3.1 Simulation

The experiments conducted on multi-core CPUs considered executions of the original
nonoptimized version of the MGB model, as well as of the optimized version that
includes AVX-512 vector instructions and OpenMP directives. The number of
OpenMP threads used in the experiments ranges from one to the maximum number
of CPU cores available on each multi-core CPU, disregarding hyper-threading, as
the results with hyper-threading showed only marginal improvements on the final
performance of the optimized version.

For the performance analysis of the fully optimized MGB model, it is also important
to evaluate the performance achieved without vectorization, i.e. using only thread
parallelism with OpenMP, regarding portability issues. As the vectorized code requires
CPUs with AVX-512 vector extensions, the nonvectorized code can serve as a basis to
verify how much the performance increases with the additional use of vectorization.
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As an example, Figure 5.2 illustrates the differences in runtime and speedup for
the vectorized and nonvectorized implementations of the MGB model, plotted as a
function of the number of OpenMP threads and executed with 1, 2, 4, and 8 threads
on system01 for the Purus and Niger datasets. In all cases, the vectorized MGB
model was faster than the nonvectorized version, achieving speedup differences of up
to 1.86 for 8 OpenMP threads (about 42 % higher). Moreover, one notices that the
runtimes of the nonvectorized version executed with only one OpenMP thread were
lower than the runtimes of the original nonoptimized version. This probably occurs
because the OpenMP directives trigger additional compiler optimizations that more
efficiently exploit the CPU resources.

Figure 5.2 - Runtimes (s) and speedups of the vectorized and nonvectorized
implementations of the MGB model on system01 for the simulation input
datasets. “Threads = 0” corresponds to the original nonoptimized code.

(a) Purus dataset. (b) Niger dataset.
SOURCE: Author.

Figure 5.3 exhibits the runtimes and speedups achieved by the fully optimized MGB
model on the multi-core CPUs of each computer system for the simulation input
datasets. The single-threaded vectorized MGB model reached the highest speedup of
2.71× for the Purus dataset on system01 (the inertial model reached the speedup of
3.03×), which indicates that the overall performance of the MGB model significantly
improved with only vectorization. In addition, the lowest runtimes for the single-
threaded version were achieved on system02, which consists of a more advanced
CPU and higher bandwidth memory when compared to the hardware resources of
system01.

The performance analysis reported from each system by the Intel VTune profiler
(INTEL, 2020) indicated that the performance of the single-threaded vectorized MGB
model was limited by how many floating-point instructions of the original code were
vectorized, which did not exceed 65.3 %, resulting in the presence of scalar floating-
point instructions in the compiled code. Besides this limitation, measurements of
the amount of CPU cycles spent on long-latency division operations and on pipeline
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slots stalled due to the demand of memory load/store instructions reached up to
27.9 % and 25.7 %, respectively, which also hindered performance.

Figure 5.3 - Runtimes (s) and speedups of the MGB model on multi-core CPUs for
the simulation input datasets. “Threads = 0” corresponds to the original
nonoptimized code.

(a) Purus dataset. (b) Niger dataset.
SOURCE: Author.

The combination of vectorization and multi-core parallelism resulted in larger
reductions on the runtimes of the MGB model, increasing the corresponding speedups,
although the runtimes reached a plateau showing only slight changes, independently
of the number of threads. This occurred because the amount of workload processed
by the routines of the inertial model, i.e. the number of catchments, is on the order
of thousands of loop iterations, which is not enough to provide good scalability, as
each thread is assigned a small amount of loop iterations to be processed.

This effect can be noticed by comparing the speedups achieved by the Purus and
Niger test cases. As the workload of the Niger dataset is approximately 2× larger
than the workload of the Purus dataset, the available hardware resources are more
efficiently exploited in the former case, thus resulting in higher speedups. In addition,
even though the parallel runtimes across the systems were similar, the speedups on
system01 were higher because the execution of the nonoptimized MGB model on
this system was slower, so that the effects of the optimizations were more pronounced
than on system02.

From Amdahl’s law, the highest speedups achievable by the MGB model on system01
and system02, assuming full parallelization of the inertial model, are 5.75× and
5.88×, respectively. These theoretical speedups were computed from the average
runtime percentage of the inertial model (Subsection 3.1.3) relative to the full
execution of the original nonoptimized MGB model across the Purus and Niger
datasets on each system, considering the total number of cores available.
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The highest speedups achieved with the optimized MGB model on system01 were
5.32× (Purus) and 6.27× (Niger), both with 8 threads, whereas on system02 were
4.26× (Purus) and 4.89× (Niger), the former with 4 threads and the latter with 8
threads. This indicates that significant speedups were achieved with the optimizations
proposed herein, and the case in which the speedup achieved for the Niger dataset
on system01 was higher than the theoretical peak probably occurred due to cache
effects, as more L2 caches (faster accesses) were available with multi-core processing.

Besides the executions of the MGB model on multi-core CPUs, the optimized CUDA
version implemented for many-core GPUs achieved higher speedups for the inertial
model, computed from serial CPU runtimes and parallel GPU runtimes. As GPUs
work with sets of 32 threads (warps), the GPU implementation executed the CUDA
kernel of each routine using 256 threads per block (multiple of 32) that resulted in
the highest speedups for the MGB model. Figure 5.4 depicts a comparison between
the optimal CPU speedups and the GPU speedups achieved relative to the original
CPU runtimes for each input dataset, showing that the inertial model’s performance
on GPU was higher than on CPU in all cases.

Figure 5.4 - Speedups of the MGB model, the inertial model (INE), and the STE, DIS,
and CON routines on CPU and GPU for the Purus and Niger input datasets
on system01 and system02.

SOURCE: Author.

The runtimes of the STE, DIS, and CON routines of the inertial model were greatly
reduced with the executions of the corresponding CUDA kernels on GPU. The average
runtimes of the routines for the Purus and Niger datasets, considering both GPUs,
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were 2.33 s and 1.27 s, respectively, which explains the noticeably high speedups
achieved for the DIS and CON routines that execute most of the computations,
as highlighted for the Niger dataset on system01. The performance of the STE
and CON routines on CPU and GPU was hindered by the insufficient number of
floating-point operations (STE) and by the table search that requires many memory
movements (CON), not reaching significant speedups as the DIS routine, which more
effectively exploited the CPU and GPU hardware resources.

However, although the runtimes of the routines were considerably small, the speedups
of the MGB model on both the Pascal GPU of system01 (GPU01) and the Volta
GPU of system02 (GPU02) were lower than the speedups achieved on the multi-core
CPUs of each system (CPU01 and CPU02). This result was mainly caused by the
overheads of data transfer between host (CPU) and device (GPU) memories, and of
kernel launches.

By collecting performance data with the CUDA profiling tool, the total percentage
of the MGB model’s execution time on GPU that was spent on data transfers and
kernel launches ranged from 68.90 % to 71.88 % for the Purus dataset and from
53.79 % to 54.57 % for the Niger dataset, as Table 5.3 shows. More specifically, the
Purus dataset required more calls to the CUDA API function of kernel launches
(4 272 300 ) when compared to the Niger dataset (2 791 500 ).

Table 5.3 - Percentages of CPU/GPU data transfers and GPU kernel launches.

system01 system02
Dataset Purus Niger Purus Niger

Data transfer 22.33 % 21.02 % 18.47 % 13.84 %
Kernel launches 46.57 % 33.55 % 53.41 % 39.95 %

Total 68.90 % 54.57 % 71.88 % 53.79 %

The MGB model’s performance could increase with larger workloads, as the
available input datasets are not GPU-friendly. These circumstances indicate that
the development of more efficient CPU codes is more advantageous than the GPU
solution. Even though the GPUs provided enough threads to assign each loop iteration
to one single GPU thread, significantly reducing the inertial model’s runtimes, the
MGB model did not scale when executed on GPU because of the overheads that
were added to the final runtimes, decreasing the overall MGB model’s performance.
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5.3.2 Calibration

In addition to the simulation results, the performance of the calibration procedure
was also evaluated. As previously mentioned, the calibration was executed for a
particular Purus input dataset that additionally employs a time series of observed
discharges, which are essential data to compute the objective functions to calibrate
the watershed parameters. The observed discharges are from the municipality of
Canutama in the Amazonas state, Brazil, located at the outlet of the Purus watershed.
All discharge values were automatically collected with a fluvial gauge controlled by
the Brazilian National Water Agency, or ANA (“Agência Nacional de Águas”), for
the period from January 2nd 2000 to January 7th 2015.

The calibration procedure was executed with the following optimizations: (a) either
vectorization and multi-core CPU parallelism or many-core GPU parallelism, for
the loops that process catchments (simulation), and (b) multi-core CPU parallelism,
for the loops that process samples (calibration). Therefore, the analysis of the
performance of the calibration procedure considers different types of executions
depending on which optimizations were selected: (a) nonoptimized simulation and
calibration (original code), where neither the simulation nor the calibration were
optimized; (b) optimized simulation, where only the simulation was optimized; and
(c) optimized simulation and calibration, where both the simulation and calibration
were optimized.

Besides setting the number of samples s= 100 as the only input argument, the
calibration procedure was also configured to limit the number of generations in the
evolution of samples to 400 generations. This value was obtained from fully executing
the nonoptimized original calibration on system01 (422) and system02 (434), i.e.
until all samples were considered nondominated.

Figure 5.5 exhibits the runtimes and speedups for all types of execution. Each type is
identified by a code that indicates whether or not the simulation and calibration were
optimized and the level of parallelism used. The types V0-X for CPU specify that
the calibration was not optimized (V0), and X threads were used in the simulation.
The value X=0 is for the original nonoptimized code and the values X={1, 2, 4, 8, 10}
are for the simulation optimized with vectorization and X threads.

The types V1 and V2 are the optimized calibration that assigned samples to CPU
threads selected from either the worst-ranked samples (V1) or also other bad
samples with Pareto rank larger than one in the same generation (V2). In both
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cases, simulations were executed with only vectorization, as adding nested parallel
regions for simulation and calibration resulted in performance degradation due to
overheads introduced for allocating and managing new parallel regions and sub-
threads, whenever the STE, DIS, and CON routines were called in simulations.

Figure 5.5 - Runtimes (s) and speedups of the calibration procedure on CPU and GPU for
the Purus input dataset.

SOURCE: Author.

The results for the type V2 were obtained from calibration executions that processed
bad samples of Pareto rank up to RMAX-5, which was the case with the highest
speedups. Furthermore, the types V0, V1, and V2 for GPU also assigned samples to
CPU threads in the calibration, although simulations were executed on GPU in all
cases.

It can be noticed that the calibration procedure is a really time-consuming task. The
original nonoptimized calibration (V0-0) took more than seven and eight days to
reach the limit of 400 generations, when executed uninterruptedly on system02 and
system01, respectively. This indicates that whenever the input dataset needs to be
updated for a recalibration, computational resources are used for long periods of
time, thus directly affecting the usefulness of the calibration procedure.

The calibration with optimizations only in the simulation (V0-X) showed considerable
performance gains. The smallest runtime achieved was 132 073 s (1 d 12 h 41 min 13 s)
on system01 with 8 threads (V0-8), reaching the speedup of 5.78×. In addition,
the use of 10 threads on system02 (V0-10) had a small effect on decreasing the
runtime, possibly because the workload is not large enough to exploit more CPU
hardware resources.
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Even though the performance results for the types V0-X reached significant speedups,
the highest performance levels were achieved with the type V2 on both systems, i.e.
processing in parallel all bad samples of Pareto rank up to RMAX-5. This indicates
that selecting and processing a larger number of samples for each generation in
the evolution of samples, not only the worst-ranked samples (RMAX) as originally
established in the MOCOM-UA method, resulted in more performance gains. In this
case, the smallest runtime was 33 738 s (9 h 22 min 18 s) on system02, reaching the
highest speedup of 19.89×.

The GPU results were similar for all types of optimization and did not exhibit
performance gains when compared to the best CPU results. The GPU runtimes
and speedups were comparable to the CPU results obtained from the type V0-2.
This behavior was expected because the previous analysis about the performance of
the simulations of the MGB model executed on GPU showed that the overheads of
data transfer between host and device memories, and of kernel launches, degraded
performance. This effect was more pronounced in the calibration procedure that
required a large number of simulations, as indicated in Table 5.4.

Table 5.4 - Number of simulations executed on GPU in the calibration procedure.

Type system01 system02
V0 4729 4600
V1 3847 3619
V2 5409 4122

5.4 Scalability with problem size

The available input datasets (Purus and Niger) used in this thesis for simulations of
real-world hydrological scenarios using the MGB model did not provide workloads,
i.e. the number of catchments (loop iterations), of sizes large enough to reach optimal
scalability, even by exploiting most hardware resources of the multi-core CPUs
and many-core GPUs. Additional insights on the limitations of the MGB model’s
parallel speedups were obtained from a scalability analysis conducted with synthetic
hydrometeorological datasets, larger than those originally available, designed from
replication of parts of the original data and used as input to a miniapp application.
This miniapp defines a reliable proxy of the MGB model that reproduces the same
computations and optimizations, while allowing the use of workloads of varying sizes.
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The code structure of the MGB model’s miniapp includes the key STE, DIS, and CON
routines of the inertial model. However, the data that is explicitly computed at each
time step in other routines of the MGB model such as radiation, evapotranspiration,
and water balance, was previously stored into separate files with the original model
to be read by the miniapp, and then used in the inertial model.

The miniapp avoids a full simulation of the MGB model, so that only the critical
STE, DIS, and CON routines process varying amounts of workload (catchments),
which was replicated from the original data in the loop of each routine as a multiple
of the size of the original dataset. More flexible settings (larger datasets) allow to
evaluate how the MGB model’s performance scales with problem size.

Figure 5.6, in logarithmic scale, illustrates the runtimes and parallel speedups of the
MGB model’s miniapp, plotted as a function of the problem size, executed on CPU
and GPU for the Purus and Niger input datasets on system01 and system02. The
problem sizes of the workloads range from 1× to 32× the original size of each input
dataset. The CPU results are from simulations optimized with vectorization and
multi-core parallelism using the maximum number of cores available on each system,
i.e. 8 cores on system01 and 10 cores on system02, whereas the GPU results are
from simulations optimized with CUDA.

Figure 5.6 - Runtimes (s) and speedups of the MGB model’s miniapp on CPU and GPU
for the Purus and Niger input datasets on system01 and system02.

(a) Purus dataset on CPU. (b) Niger dataset on CPU.

(c) Purus dataset on GPU. (d) Niger dataset on GPU.
SOURCE: Author.
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The speedups on CPU increased up to the problem size of 8× for both input datasets,
reaching the highest value of 23.56× for the Niger dataset on system01. Most
speedups seemed not to improve with problem sizes either equal to or larger than
16×, as larger datasets increase the number of accesses to the slower DRAM memory,
and the memory latency is not totally hidden even with the larger availability of
faster L2 caches of the CPU cores.

However, the lowest speedup of 8.07× for the Purus dataset on system01 with the
problem size of 32× was still a satisfactory result, achieved using 8 CPU threads. In
addition, the higher speedups achieved by the MGB model’s miniapp on system02
with the problem size of 32× are explained by the fact that this system provides
more CPU cores, and also larger L3 cache size and higher bandwidth memories.

From a similar analysis, the speedups on GPU showed a different behavior. The
speedups of the MGB model’s miniapp on both GPUs kept increasing with the
problem size, although at different rates. The gap between the speedups from the
Pascal GPU (system01) and the Volta GPU (system02) was largest for the Niger
dataset with the problem size of 32×, where the speedup on the Pascal GPU was
22.90× and on the Volta GPU was 65.20× (2.85× higher). This was expected as
both the performance (7475.2 Gflops/s) and DRAM bandwidth (652.8 GB/s) of the
Volta GPU are higher than the performance (283.2 Gflops/s) and DRAM bandwidth
(320.3 GB/s) of the Pascal GPU.

By comparing the CPU and GPU speedups of the MGB model’s miniapp as in Figure
5.7, smaller problem sizes present higher speedups on CPU, mainly when compared to
the Pascal GPU. As previously discussed, this occurs because the overheads of data
transfers and kernel launches associated with the MGB model’s execution on GPU
for small input datasets degrade performance (speedup behavior on system01).

Furthermore, the maximum performance of both CPUs (≥ 919.5 Gflops/s) is higher
than the performance of the Pascal GPU, which has more impact in small dataset
cases than the slower CPU DRAM memory bandwidth (≤ 68.5 GB/s). However, for
larger problem sizes, the performance on GPU was higher than on CPU (shown for
the problem size of 16× on the Volta GPU). The scalability analysis of the MGB
model’s miniapp indicates that, if large datasets (substantial number of catchments)
are available, the MGB model’s performance will be higher on GPU than on CPU.
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Figure 5.7 - Speedups of the MGB model’s miniapp on CPU and GPU for the Purus and
Niger input datasets on system01 and system02.

SOURCE: Author.
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6 OPTIMIZATION ANALYSIS

This chapter provides a performance analysis of the optimized implementations.
This analysis was based on CPU and GPU roofline characterizations of the original
and optimized MGB model, to confirm that the optimizations more efficiently
exploited the available resources of the underlying systems. In addition, the numerical
accuracy of the hydrological results computed from the optimized implementations
was quantitatively evaluated, to ensure that the optimized versions of the MGB
model produced valid numerical results.

6.1 CPU and GPU roofline analysis

The roofline model provided a visual analysis of the performance behavior of the MGB
model on the computer systems used in this thesis. The CPU roofline characterization
obtained from executions of the MGB model includes both the original nonoptimized
and optimized versions, where only the key routines, i.e. the routines of the inertial
model, were considered for the analysis. The amounts of flops and bytes processed
by each routine, which are required for the roofline characterization, were collected
with the Intel Advisor performance analysis tool (INTEL, 2020) that is based on the
Cache-Aware Roofline Model (CARM) (MARQUES et al., 2020; ILIC et al., 2013).

Figure 6.1 exhibits the CPU roofline characterization of the STE, DIS, and CON
routines for each input dataset (Purus and Niger) on system01 and system02. In all
cases, the position of the optimized routine was moved upwards, indicating that the
performance increased in relation to the nonoptimized version, thus confirming that
the optimized version with vectorization and multi-core parallelism more effectively
used the available hardware resources. The characterization of the optimized routines
shown in these rooflines are for the performance achieved using the maximum number
of cores on each system, i.e. 8 cores on system01 and 10 cores on system02, which
resulted in the highest performance in each case.

From each roofline characterization, it can be noticed that the nonoptimized routines
were located under the DRAM memory roof. This indicates that the higher levels of
memory (L1, L2, and L3 caches) were not frequently accessed, so that the routines
required more accesses to the slower DRAM memory, which affected the overall
performance. However, as all the original routines were also located under compute
roofs, the compute optimizations (Intrinsics+OpenMP) were able to increase the
performance, moving the routines closer to higher roofs.
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Figure 6.1 - CPU roofline characterization of the STE, DIS, and CON routines for the
Purus and Niger input datasets on system01 and system02.

(a) Purus dataset on system01. (b) Niger dataset on system01.

(c) Purus dataset on system02. (d) Niger dataset on system02.
SOURCE: Author.

The addition of vectorization in the optimized codes decreased the amount of data
that is loaded from memory, as more data is kept into the CPU registers, which are
the fastest units of data storage in the CPU hardware. This optimization enabled to
approximately double the arithmetic intensity of the DIS and CON routines.

Moreover, the additional use of thread-level parallelism moved the performance of
those routines from under the DRAM roof closer to the cache roofs, in particular the
L2 and L3 cache roofs, mainly due to the larger availability of L2 caches with the
use of multiple cores. In contrast, the arithmetic intensity of the STE routine did
not increase because the amount of bytes transferred through the memory hierarchy
became larger in the optimized code, possibly due to the thread synchronization that
is required to execute the minimum reduction operation. In summary, the arithmetic
intensity changes between the original nonoptimized and optimized versions of each
routine were: STE= 0.58→ 0.44, DIS= 0.05→ 0.13, and CON= 0.06→ 0.11.
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Figure 6.2 - GPU roofline characterization of the STE, DIS, and CON routines for the
Purus and Niger input datasets on the Pascal and Volta GPUs.

(a) Purus and Niger datasets on Pascal GPU.(b) Purus and Niger datasets on Volta GPU.
SOURCE: Author.

Besides the performance analysis with the CPU roofline model, the routines of
the inertial model were also characterized with the GPU roofline models obtained
from the NVIDIA GPUs used in this thesis (Pascal and Volta). Figure 6.2 exhibits
the GPU roofline characterization of the optimized STE, DIS, and CON routines
executed on GPUs obtained with the PAPI interface. For each routine, the arithmetic
intensities on GPU are different from the corresponding ones on CPU due to the
different hardware features between CPU and GPU architectures. As an example,
the arithmetic intensity of each routine on GPU was: STE= 1.10, DIS= 1.31, and
CON= 0.15.

The performance levels of the routines were nearly the same on both GPUs for each
input dataset, showing that the performance improvements achieved with CUDA
were independent of the processor and memory capabilities of the GPUs. Almost all
cases from routine/dataset pairs remained under the DRAM roof (global memory)
with the exception of the CON routine, as this routine more often executes the
table search that keeps data in cache. Furthermore, the Niger dataset required more
floating-point operations, resulting in higher performance when compared to the
Purus dataset.

In summary, the performance results obtained from Intel Advisor (CPU) and from
PAPI (GPU) are shown in Figure 6.3. The GPU performance of the MGB model
was not computed because the performance counters were collected only for the
routines executed on GPU as CUDA kernels, not the full MGB model. Figure 6.3
shows that the overall GPU performance was higher for the Niger dataset (more
floating-point operations). The only case with similar CPU and GPU performance
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levels was the STE routine for the Purus dataset, regardless of the computer system.
The performance values highlighted in Figure 6.3 show the biggest performance
differences between CPU and GPU that occurred with the DIS routine for the Niger
dataset, as this routine executes the largest number of computations, and more
effectively used the GPU computational resources, reaching more than 400 Gflops/s.

Figure 6.3 - Performance (Gflops/s) of the MGB model (CPU) and STE, DIS, and CON
routines (CPU and GPU) for the Purus and Niger input datasets on system01
and system02.

SOURCE: Author.

In addition, the CPU performance for the Purus dataset exhibited the same pattern
on both systems, but the larger Niger dataset showed higher CPU performance on
system02. This system provides larger L3 cache and more CPU cores that increases
the availability of faster caches, reducing the number of DRAM memory accesses for
larger workloads, which directly affected performance.

6.2 Accuracy of hydrological results

The development of optimized codes to boost the performance of scientific
applications, which employ complex computational models, requires detailed
code analysis to better understand how optimizations must be executed on the
original nonoptimized implementation. More specifically, distinct low-level compiler
instructions generated from nonoptimized and optimized versions of code can result
in numerical variations in computations, introducing differences in final outputs of
the application, and thus affecting its accuracy.
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The use of explicit vectorization with Intel Intrinsics in the optimized CPU version of
the MGB model revealed to be a time-consuming development task. The vectorized
code demanded extensive tests to detect which vector instructions precisely simulated
the original CPU MGB model’s code (FREITAS et al., 2020b).

Small differences in computations throughout simulations, mainly due to how the
Fortran language treats single-precision and double-precision constants, produced
final outputs differing in the order of either hundreds or thousands between the
nonoptimized and optimized implementations, as those differences were accumulated
at each time step. Nevertheless, the optimized CPU version of the MGB model was
carefully implemented to solve data type conversion issues, and final simulation
outputs from both nonoptimized and optimized CPU versions matched exactly.

In contrast, the GPU MGB model’s version optimized with CUDA did not produce
the same simulation outputs when compared to the original nonoptimized CPU MGB
model’s code (reference). However, the results between the two versions showed only
minor variations.

The implementations of the mathematical functions in the NVIDIA CUDA math
library may be different from the ones available for CPU, and the corresponding
results should not be expected to exactly match for a given input (NVIDIA, 2020b).
Although various sets of compiler flags related to floating-point operations were tested
with the PGI compiler on GPU, trying to simulate the Intel compiler’s arithmetic
behavior on CPU, all attempts were unsuccessful.

Figure 6.4 illustrates differences between main simulation outputs, i.e. discharge and
water height, at the Purus watershed’s outlet obtained from the original nonoptimized
CPU and optimized GPU versions of the MGB model. The time series of simulated
discharges and water heights were practically the same, showing that GPU simulation
outputs almost exactly agreed with outputs produced on CPU. Mean and maximum
relative errors for discharges were 4.18× 10−5 % and 2.46× 10−4 %, respectively,
whereas for water heights were 2.51× 10−5 % and 1.53× 10−4 %.

However, for the Niger dataset, simulation outputs presented lower accuracy, as shown
in Figure 6.5. Visually, the time series of simulated discharges and water heights
were nearly identical, but the quantitative error analysis showed larger absolute and
relative errors, mainly for discharge values, reaching mean and maximum relative
errors of 0.59 % and 6.06 % for discharges, whereas 0.36 % and 3.60 % for water
heights.
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Figure 6.4 - Time series, absolute and relative errors of discharge and water height for
the Purus dataset from simulations on GPU, considering CPU outputs as
reference.

(a) Discharge’s time series. (b) Water height’s time series.

(c) Discharge’s absolute errors. (d) Water height’s absolute errors.

(e) Discharge’s relative errors. (f) Water height’s relative errors.

SOURCE: Author.

Thus, the Niger dataset was more sensitive to differences from intermediate
computations of the MGB model. In addition, it is worth mentioning that the
first values of all time series are large because initial and boundary conditions are
set to default values.

For the analysis of calibration results obtained from the optimized implementations,
the accuracy was measured by comparing minimum values of the objective functions
from each type of optimization with minimum values from the original nonoptimized
implementation. As samples processed in the calibration procedure are selected based
on a random probability value, calibration results of the optimized implementations
are expected to show differences relative to original results (reference).
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Figure 6.5 - Time series, absolute and relative errors of discharge and water height for the
Niger dataset from simulations on GPU, considering CPU outputs as reference.

(a) Discharge’s time series. (b) Water height’s time series.

(c) Discharge’s absolute errors. (d) Water height’s absolute errors.

(e) Discharge’s relative errors. (f) Water height’s relative errors.

SOURCE: Author.

Table 6.1 exhibits minimum values of the objective functions and relative errors
for each type of optimization in comparison to results for the type V0-0 (original
nonoptimized implementation). All values were computed as the average between
the results from the calibration procedure executed on system01 and system02,
except the results for the type V0-10, which were available only from system02.

The largest relative errors occurred for the type V2 on CPU, reaching 5.97 %, 3.24 %,
and 1.52 % for the coefficients NSE and NSElog, and the systematic error ERR,
respectively. Therefore, these small errors indicate that calibration results were
acceptable and validated the optimized implementations.
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Table 6.1 - Minimum values (MIN) and relative errors (RE) of the objective functions used
in the calibration procedure for each type of optimization.

Objective NSE NSElog ERR
function MIN RE (%) MIN RE (%) MIN RE (%)

T
yp

e C
PU

V0-0 0.1866 - 0.1172 - 17.1676 -
V0-1 0.1886 1.09 0.1172 1.11 17.1974 0.43
V0-2 0.1884 0.99 0.1172 0.73 17.2409 0.29
V0-4 0.1875 1.05 0.1180 0.51 17.1987 0.10
V0-8 0.1864 0.13 0.1178 0.47 17.1507 0.15
V0-10 0.1921 2.40 0.1177 0.77 17.3324 1.06
V1 0.1895 1.56 0.1187 1.32 17.1129 0.40
V2 0.1977 5.97 0.1210 3.24 17.4277 1.52

G
PU

V0 0.1896 1.64 0.1186 1.20 17.1359 0.18
V1 0.1901 1.88 0.1194 1.87 17.0583 0.64
V2 0.1976 5.93 0.1188 1.67 17.3118 0.84
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7 CONCLUSION

This thesis presented an investigation of performance optimization techniques applied
on the MGB hydrological model and the MOCOM-UA calibration method, widely
used by the hydrology community in Brazil. Different CPU and GPU optimizations
improved the performance of the calibration procedure, increasing the usefulness in
hydrological applications by reducing execution times from more than one week to
only a few hours.

Vectorization via Intel Intrinsics and thread parallelism with OpenMP on CPU, and
also data parallelism with CUDA on GPU, were employed to execute optimized
simulation and calibration codes based on a double-layer approach. Experiments were
conducted on state-of-the-art CPU+GPU systems available at INESC-ID (Portugal)
for real-world input datasets (Purus and Niger rivers).

The vectorization of the key routines of the MGB model achieved significant speedups,
considering that approximately two-thirds of code was vectorized, according to the
Intel VTune’s analysis. Moreover, the CPU speedups of the fully optimized MGB
model (vectorization and thread parallelism) were close to the theoretical peak from
Amdahl’s law, or even higher due to cache effects of multi-core processing.

This level of performance would not be reached by simple vectorization via compiler
flags. Even with modern compilers, the effective use of vector capabilities in current
processors requires careful code reorganization. This reorganization makes the
application code suitable to the use of a library with intrinsic vector functions,
which maximize the exploitation of those vector resources inside the processors.

The runtimes of all routines of the inertial model were reduced to less than 3 s with
the CUDA optimizations for GPU, but the MGB model’s performance was hindered
by overheads of data transfer between CPU and GPU memories and of kernel
launches (too many routine calls). The workloads of the available input datasets are
not GPU-friendly, in the sense that there was not enough work to keep the GPU
functional units busy for extended periods of time, and thus not providing good
scalability when executed on GPU, so the CPU optimizations resulted in a more
appropriate solution. In addition, the performance of the calibration procedure was
also significantly improved, reaching speedups close to 20× on CPU with a proposed
approach that proved to be an efficient solution, as the parallelization of stochastic
optimization algorithms may be trivial, where many candidate solutions can be
evaluated in an independent manner in parallel.
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The scalability analysis with the MGB model’s miniapp provided additional insights
on how the MGB model’s performance scaled with problem size, indicating that the
workloads of the available datasets were not enough for good scalability. Speedups
of approximately 24× and 65× were achieved on CPU and GPU, respectively, for
problem sizes of at least 8× larger than the original workloads. This analysis shows
that the proposed optimizations enable effective MGB model’s use with real-world
watersheds containing many more catchments than the ones originally employed in
the experiments.

The roofline analysis is a novel technique in the context of performance analysis of
hydrological models. The CPU roofline analysis presented in this thesis confirmed that
the proposed optimizations more effectively exploited the available CPU hardware
resources, moving routines from under the slower DRAM roof to under faster cache
roofs. Furthermore, the GPU roofline characterization showed that executing the
MGB model on NVIDIA GPUs (Pascal and Volta) resulted in different values of
arithmetic intensity and performance when compared to CPU. In particular, one of
the routines achieved performance almost 8× higher than on CPU, as the CUDA
kernels were significantly faster than the optimized CPU codes.

A quantitative analysis of hydrological results showed that the time series of discharges
and water heights presented small relative numerical errors, where the largest error
reached 6.06 % in a particular position of the time series of discharges for one
of the datasets, although in this case the mean relative error was only 0.59 %.
The comparison between minimum objective functions from the nonoptimized and
optimized calibration implementations also resulted in acceptable accuracy. The
largest relative error of one objective function was 5.97 %, which validated the
optimized implementations.

Overall, this investigation proved that modern, state-of-the-art computer systems
can be effectively exploited for legacy applications originally written for sequential
processing. By carefully deploying appropriate parallelization techniques, it is possible
to adjust and adapt those applications to the advanced capabilities of currently
available hardware. Despite being a labor-intensive effort in some cases, those
optimizations provide, in return, significant performance benefits that may justify
the investments applied for acquisition of a modern computing system.
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7.1 Potential future work

As possible routes for future work, the roofline analysis can be extended to the
MGB model’s miniapp for deeper understanding of how optimizations exploit
hardware resources for larger problem sizes. Furthermore, CPU and GPU roofline
characterizations of the optimized implementations can be further analyzed, so new
insights about the optimized MGB model’s behavior could provide more opportunities
for additional optimizations and, consequently, more gains in performance.

The OpenCL framework can also be used to provide more optimized implementations,
so that new experiments could be conducted on CPU, GPU, and also emerging
CPU+GPU architectures that combine CPU and GPU in a single chip, as these hybrid
architectures cannot be explored by using the CUDA framework. More importantly,
despite expecting differences in performance, employing OpenCL would make the
codes portable to a wide range of devices, including multi-core CPUs, GPUs from
distinct vendors, and also FPGAs.

The estimation of high-quality sets of model parameters can also be extended
by processing multiple independent calibration procedures on different nodes of a
supercomputer, each with its own initial sets of parameters. This could provide more
possibilities of finding the optimal sets of parameters for the MGB model, covering
a wider range in the multi-dimensional search space and potentially expanding the
calibration results to multiple Pareto fronts, which can all be further compared and
analyzed for the selection of the optimal sets of model parameters.

The CPU and GPU optimized implementations of the MGB model, as presented
in this thesis, can be employed in another version of the model that simulates
hydrological processes for continental-scale datasets. The IPH research group is
currently working with datasets that cover the entire South America, which can be
approximately 8× larger than the Purus and Niger datasets. The performance of
this large application is expected to be largely improved, as shown by the scalability
analysis that considered problem sizes of up to 32× the original size.

In addition, a detailed numerical analysis of the difference equations obtained from
the numerical scheme of the inertial model can also be considered in order to
expand the knowledge about its stability and convergence conditions. Such numerical
analysis was intentionally left outside the scope of this thesis, as the thesis focused
on improving the MGB model’s performance under the current modeling scheme
that is already in use by hydrologists.
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